Q- Using mesh analysis determine the current through 5Ω resistor and voltage V in the given network.
Let the clockwise currents are I_{1} and I_{2} as in figure. The current through R3 will be $\mathrm{I}_{1}-\mathrm{I}_{2}$.
Considering the loop on the left and applying Kirchhoff's law we get

	$\Sigma \mathrm{E}=\Sigma \mathrm{I} \mathrm{R}$
Or	$-\mathrm{E}_{1}+\mathrm{E}_{3}=\mathrm{I}_{1}\left(\mathrm{R}_{1}+\mathrm{R}_{5}\right)+\left(\mathrm{I}_{1}-\mathrm{I}_{2}\right) * \mathrm{R}_{3}$
Or	$-4+6=6 \mathrm{I}_{1}+1^{*}\left(\mathrm{I}_{1}-\mathrm{I}_{2}\right)$
Or	$7 \mathrm{I}_{1}-\mathrm{I}_{2}=2$

Considering the loop on the right and applying Kirchhoff's law we get
$\Sigma \mathrm{E}=\Sigma \mathrm{I} \mathrm{R}$
Or $\quad-E_{2}-E_{3}=I_{2}\left(R_{4}+R_{2}\right)-\left(I_{1}-I_{2}\right) * R_{3}$
Or $\quad-15-6=13 \mathrm{I}_{2}+1^{*}\left(\mathrm{I}_{1}-\mathrm{I}_{2}\right)$
Or $\quad I_{1}-12 I_{2}=-21$
(1)*12-(2) gives

$$
83 I_{1}=45
$$

Or $\quad \mathrm{I}_{1}=45 / 83=\mathbf{0 . 5 4 2} \mathbf{A}$
And $\quad I_{2}=7 I_{1}-2=7 * 0.542-2=1.794 \mathbf{A}$
Hence current through 5 W resistor is $\mathbf{0 . 5 4 2} \mathrm{A}$
And the voltage Va will be given by considering the central arm as

$$
\mathrm{Va}=-\mathrm{E}_{3}-\left(\mathrm{I}_{1}-\mathrm{I}_{2}\right) * \mathrm{R}_{3}=-6-(0.542-1.794) *_{1}=-4.748 \mathrm{~V}
$$

