Q- A piston-cylinder device contains N_{2} gas, initially at 1.5 bar, $20^{\circ} \mathrm{C}, 0.05 \mathrm{~m}^{3}$. The gas is now compressed in a polytropic process, $\mathrm{PV}^{\mathrm{n}}=$ constant, to 4 bar, $150^{\circ} \mathrm{C}$. Determine the polytropic exponent ' n ', the work done on the gas and the heat transfer.

Nitrogen at given temperatures and pressure behaves as an ideal gas. An ideal gas obeys the gas equation PV $=\mathrm{n}$ RT under all processes. Thus we can write for the given gas

$$
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}
$$

Substituting given values we can calculate the volume of compressed gas as
[As we have pressure multiplied on both sides of equation, unit may not be changed]

$$
\begin{equation*}
\frac{1.5 * 0.5}{(273+20)}=\frac{4 * V_{2}}{(273+150)} \tag{1}
\end{equation*}
$$

Gives $V_{2}=\frac{1.5 * 0.5 *(273+150)}{4 *(273+20)}=0.27 \mathrm{~m}^{3}$
As our process is given by

$$
P V^{n}=\text { constant }
$$

For the two states of the gas we can write

$$
P_{1} V_{1}^{n}=P_{2} V_{2}^{n}
$$

Gives 1.5*(0.5) ${ }^{n}=4 *(0.27)^{n}$
Or $\quad 1.5 * 0.5^{n}=4 * 0.27^{n}$
Or $\left(\frac{0.5}{0.27}\right)^{n}=\frac{4}{1.5}$
Or $\quad \ln \left(\frac{50}{27}\right)^{n}=\ln \left(\frac{8}{3}\right)$
Or $\quad n * \ln (1.852)=\ln 2.667$
Gives $n=\frac{\ln 2.667}{\ln 1.852}=1.592$
Hence the exponent $\mathrm{n}=1.592$
The work done by the gas in any process is given by

$$
W=\int P * d V
$$

As the process is given by $\mathrm{P} \mathrm{V}^{\mathrm{n}}=$ constant K (say)
Substituting we get the work done as

$$
W=\int P * d V=\int_{V_{1}}^{V_{2}}\left(\frac{K}{V^{n}}\right) d V
$$

Or $\quad W=K \int_{V_{1}}^{V_{2}} V^{-n} d V=\frac{K}{-n+1}\left[V^{-n+1}\right]_{V_{1}}^{V_{2}}$

Or $\quad W=\frac{K}{-n+1}\left[\frac{V}{V^{n}}\right]_{V_{1}}^{V_{2}}=\frac{K}{-n+1}\left[\frac{V_{2}}{V_{2}^{n}}-\frac{V_{1}}{V_{1}^{n}}\right]=\frac{1}{-n+1}\left[\frac{K V_{2}}{V_{2}^{n}}-\frac{K V_{1}}{V_{1}^{n}}\right]$
But as $K / V^{n}=P$ substituting for initial and final states we get

$$
W=\frac{1}{-n+1}\left[P_{2} V_{2}-P_{1} V_{1}\right]
$$

Now here

$$
\begin{aligned}
& \mathrm{P}_{1}=1.5 \mathrm{bar}=1.5 * 10^{5} \mathrm{~Pa} \\
& \mathrm{P}_{2}=4.0 \mathrm{bar}=4.0 * 10^{5} \mathrm{~Pa} \\
& \mathrm{~V}_{1}=0.5 \mathrm{~m}^{3} \\
& \mathrm{~V}_{2}=0.27 \mathrm{~m}^{3}
\end{aligned}
$$

And $n=1.592$
Substituting in above equation we get

$$
W=\frac{1}{-1.592+1}\left[4.0 * 10^{5} * 0.27-1.5 * 10^{5} * 0.5\right]
$$

Or $\quad W=\frac{1}{-1.592+1}\left[1.08 * 10^{5}-0.75 * 10^{5}\right]$
Or $\quad W=-5.57 * 10^{4} \mathrm{~J}$
Hence the work done by the gas will be $\mathbf{W}=-5.57 * 10^{4} \mathrm{~J}$
[Negative sing means that this work is done on the gas by external forces to compress it]
The heat transferred $\Delta \mathrm{Q}$ to the system is given by the first law of thermodynamics as

$$
\Delta Q=\Delta U+W
$$

Where $\Delta \mathrm{U}$ in increase in internal of the gas and W is work done by the gas.
As the increase in internal energy of the gas is given by $\left(v C_{V} \Delta T\right)$, we get

$$
\Delta Q=v C_{V} \Delta T+W
$$

[Cv is the molar specific heat and v is the number of moles in the gas)
Now $\quad v=\frac{P V}{R T}=\frac{1.5 * 10^{5} * 0.5}{8.31 *(273+20)}=30.80 \mathrm{~mol}$
$\mathrm{Cv}=20.8 \mathrm{~J} /(\mathrm{mol} . \mathrm{K})$
Substituting all values we get the heat supplied to the gas

$$
\Delta Q=v C_{V} \Delta T+W
$$

Or

$$
\Delta Q=30.80 * 20.8 * 130+\left(-5.57 * 10^{4}\right)=8.33 * 10^{4}-5.57 * 10^{4} \mathrm{~J}
$$

Or $\quad \Delta Q=2.76 * 10^{4} \mathrm{~J}$

