A capacitor is made from two hollow, coaxial, iron cylinders, one inside the other. The inner cylinder is negatively charged and the outer is positively charged; the magnitude of the charge on each is 10.0 pC . The inner cylinder has a radius of 0.200 mm , the outer one has a radius of 5.40 mm , and the length of each cylinder is 25.0 cm .
a) What is the capacitance?

The capacitance of such a capacitor (called a cylindrical capacitor) of length L is given by

$$
C=\frac{2 \pi \epsilon_{0} L}{\ln (b / a)}
$$

Here b is the radius of the outer cylinder and a is the radius of the inner cylinder.
Now

$$
\begin{array}{ll}
a=0.200 \mathrm{~mm}=2.00 * 10^{-4} \mathrm{~m} ; & b=5.40 \mathrm{~mm}=5.40 * 10^{-3} \mathrm{~m} \\
L=25.0 \mathrm{~cm}=0.250 \mathrm{~m}
\end{array}
$$

Substituting in the equation above, we get

$$
C=\frac{2 \pi \epsilon_{0} L}{\ln (b / a)}=\frac{2 * 3.14 * 8.854 * 10^{-12} * 0.250}{\ln (5.40 / 0.200)}=\frac{1.39 * 10^{-11}}{3.30}=4.22 * 10^{-12} F
$$

Or the capacitance of the cylinder is 4.22 pF .
b) What applied potential difference is necessary to produce these charges on the cylinders?

The charge on the capacitor is related to the potential difference across it as

$$
\begin{aligned}
\mathrm{Q} & =\mathrm{CV} \\
\text { Or } \quad \mathrm{V} & =\mathrm{Q} / \mathrm{C}=(10 \mathrm{pC}) /(4.22 \mathrm{pF})=\mathbf{2 . 3 7} \mathrm{V}
\end{aligned}
$$

