A spherical capacitor has two different layers of dielectrics between its plates. Their permittivities are ϵ_{1} for $a<r<r_{0}$ and ϵ_{2} for $r_{0}<r<b$. Find the capacitance of this system by finding the total energy of the fields between the plates.

Let the charge on the innermost plate is Q . The field at distance r from the center of the spheres is given by

$$
E=\frac{Q}{4 \pi \epsilon_{0} \epsilon_{r} r^{2}}
$$

Here ϵ_{r} is the dielectric constant at that point.
Now the volume density of electrostatic energy stored in an electric field is given by
Thus considering an infinitesimally thin spherical layer of
 radius r and thickness dr the energy stored in that layer is given by

$$
d U=\frac{1}{2} \epsilon_{\mathrm{o}} \epsilon_{r} E^{2} d V=\frac{1}{2} \epsilon_{0} \epsilon_{r} E^{2}\left(4 \pi r^{2} * d r\right)
$$

Or $\quad d U=\frac{1}{2} \epsilon_{\mathrm{o}} \epsilon_{r}\left(\frac{Q}{4 \pi \epsilon_{\mathrm{o}} \epsilon_{r} r^{2}}\right)^{2}\left(4 \pi r^{2} * d r\right)$
Or

$$
d U=\frac{Q^{2}}{8 \pi \epsilon_{0} \epsilon_{r}} * \frac{1}{r^{2}} * d r
$$

Thus energy stored in the capacitor can be calculated by integrating above equation for the two parts of different dielectrics and we get

$$
U=\frac{Q^{2}}{8 \pi \epsilon_{0}} *\left[\frac{1}{k_{e 1}} \int_{a}^{r_{0}} \frac{d r}{r^{2}}+\frac{1}{k_{e 2}} \int_{r_{0}}^{b} \frac{d r}{r^{2}}\right]
$$

Or

$$
U=\frac{Q^{2}}{8 \pi \epsilon_{0}}\left[\frac{1}{k_{e 1}}\left(-\frac{1}{r_{0}}+\frac{1}{a}\right)+\frac{1}{k_{e 2}}\left(-\frac{1}{b}+\frac{1}{r_{0}}\right)\right]
$$

Now the energy stored in a capacitor is given by

$$
\mathrm{U}=\mathrm{Q}^{2} / 2 \mathrm{C}
$$

Thus the equivalent capacitance of the given capacitor is given by

$$
C=\frac{Q^{2}}{2 U}=\frac{Q^{2}}{\frac{Q^{2}}{4 \pi \epsilon_{0}}\left[\frac{1}{k_{e 1}}\left(-\frac{1}{r_{0}}+\frac{1}{a}\right)+\frac{1}{k_{e 2}}\left(-\frac{1}{b}+\frac{1}{r_{0}}\right)\right]}
$$

Or $\quad C=\frac{Q^{2}}{2 U}=\frac{4 \pi \epsilon_{0} k_{e 1} k_{e 2} r_{0} a b}{\left[k_{e 2}\left(r_{0} b-a b\right)+k_{e 1}\left(a b-r_{0} a\right)\right]}$
Or $\quad C=\frac{4 \pi \epsilon_{0} k_{e 1} k_{e 2} r_{0} a b}{\left[\left(k_{e 2} b-k_{e 1} a\right) r_{0}+a b\left(k_{e 1}-k_{e 2}\right)\right]}$

