Q1- A 1.0 cm wide diffraction grating has 1000 slits. It is illuminated by light of wavelength 550 nm . What are the angles of the first two diffraction maxima?

In a diffraction grating if d is the spacing between two ruling (opaque lines $=$ slits) and I is the wavelength of the light used, then the angle θ of the $\mathrm{m}^{\text {th }}$ order maximum is given by

$$
\sin \theta=\frac{m \lambda}{d}
$$

Thus $\sin \theta_{1}=\frac{1 * 550 * 10^{-9}}{(0.01 / 1000)}=\frac{550 * 10^{-9}}{1 * 10^{-5}}=0.055$
Or $\quad \theta_{1}=3.153^{\circ}$
And similarly for second maximum

$$
\begin{aligned}
& \sin \theta_{2}=\frac{2 * 550 * 10^{-9}}{(0.01 / 1000)}=\frac{2 * 550 * 10^{-9}}{1 * 10^{-5}}=0.11 \\
& \text { Or } \quad \theta_{2}=6.315^{\circ}
\end{aligned}
$$

Q2- A helium-neon laser of wavelength 633 nm illuminates a diffraction grating. The distance between the two first order bright fringes is 32 cm on a screen 2.0 m behind the grating. What is the spacing between slits of the grating?

The angle of deviation θ of the first order maximum is given by

$$
\sin \theta=\frac{\lambda}{d}
$$

The distance x of this maximum from the central maximum is given by

$$
x / D=\tan \theta=\frac{\sin \theta}{\sqrt{1-\sin ^{2} \theta}}=\frac{\lambda / d}{\sqrt{1-(\lambda / d)^{2}}}=\frac{\lambda}{\sqrt{d^{2}-\lambda^{2}}}
$$

Squaring this equation we have

$$
d^{2}-\lambda^{2}=\lambda^{2} D^{2} / x^{2}
$$

Gives $d^{2}=\lambda^{2}\left(1+\frac{D^{2}}{x^{2}}\right)$
Now as the two first order maximums are formed on the either side of the central maximum the distance between the two will be $2 * x$ and hence we have

$$
x=32 / 2=16 \mathrm{~cm} .
$$

Substituting the values of the given quantities we have

$$
d^{2}=\left(633 * 10^{-9}\right)^{2} *\left(1+\frac{2^{2}}{0.16^{2}}\right)=4.00 * 10^{-13} * 157.25=6.3 * 10^{-11}
$$

Or

$$
\mathrm{d}=7.94 * 10^{-6} \mathrm{~m}=7.94 * 10^{-3} \mathrm{~mm}
$$

