Q1- During the time interval between $\mathrm{t}=0$ and $\mathrm{t}=17 \mathrm{~s}$, the total charge that crossed a plane across a wire at time t is given by $(16 C)\left(1-e^{-t / 5.8 s}\right)$, where t is in seconds. What is the maximum value of the current? What is the current at $t=5.8 \mathrm{~s}$?

The current is the rate of flow of charge and hence if the total charge crossed is Q at time t and Q $+d Q$ at time $t+d t$ then the current at time t is given by

$$
I=\frac{d Q}{d t}=\frac{d}{d t}\left[16\left(1-e^{-t / 5.8}\right)\right]
$$

Or $\quad I=16\left[0-e^{-t / 5.8}\left(-\frac{1}{5.8}\right)\right]$
Or $\quad I=16 * e^{-t / 5.8}\left(\frac{1}{5.8}\right)$
Or $\quad I=2.76 * e^{-t / 5.8}$
Here the current is a function of time and decreasing continuously with it. The current will be maximum for $t=0$ and minimum for $T=$ infinity.

The maximum current is

$$
\operatorname{Imax}=2.76 * \mathrm{e}^{0}=2.76 \mathrm{~A}
$$

And the current at time 5.8 sec will be

$$
I=2.76 * e^{-5.8 / 5.8}=\frac{2.76}{e}=\frac{2.76}{2.72}=1.015 \mathrm{~A}
$$

[This equation is the same as the equation for the charging of a capacitor and the behavior is similar to that. The charge is 0 at $t=0$ and the charging current is maximum at $t=$ infinity]

Q2- A tube of mercury with a resistivity of $9.84 x \mathbf{O}^{-7} \Omega . m$ has a $17.0 \mathrm{~N} / \mathrm{C}$ electric field inside the column of mercury. How much current is flowing, if the diameter of the tube is 2.0 mm ?

The current density is given by

$$
j=E / \rho
$$

Here E is electric field and ρ is resistivity of the conductor.
Or $\quad j=\frac{17.0}{9.84 * 10^{-7}}=1.73 * 10^{7} \mathrm{~A} / \mathrm{m}^{2}$
Hence current through the column is

$$
I=j * A=j * \pi d^{2} / 4=1.73 * 10^{7} * 3.14^{*}\left(2.0^{*} 10^{-3}\right)^{2} / 4=54.32 A
$$

