Q1- a) What is the resistance of a light bulb that uses 75 Watts at 115 Volts?
b) What is the current in the bulb in this situation?

The power dissipated P in a resistance R when a current I flowing through it by applying a voltage V is given by

$$
P=V I=I^{2} R=V^{2} / R
$$

Here the power of the bulb $P=75$ Watt
The voltage across the bulb $\mathrm{V}=115 \mathrm{~V}$
Thus the current in the circuit is given by

$$
\mathrm{P}=\mathrm{V}^{2} / \mathrm{R}
$$

Gives $R=V^{2} / P=115^{2} / 75=\mathbf{1 7 6 . 3 3} \Omega$
And the current is given by

$$
\mathrm{P}=\mathrm{VI}
$$

Or $\quad 75=115 *$ I
Gives $\mathrm{I}=75 / 115=\mathbf{0 . 6 5 2 2} \mathbf{A}$

Q2- An electric heater is designed to consume 600 W when connected to a 120 V line. How much power is actually used if line voltage is only 110 V ?

The resistance of the heater coil is given by the rated power as

$$
P=V^{2} / R
$$

Or $\quad \mathrm{R}=120^{2} / 600=24 \Omega$
Now as the voltage is less, the power consumed at this voltage 110 V will be

$$
P^{\prime}=V^{2} / R=110^{2} / 24=504.2 \mathbf{~ W}
$$

Q3- A 6V, 3W light bulb connected across a 6 V battery draws a current of 0.480 A . Find the battery's internal resistance.

The resistance of the light bulb is given by its ratings as

$$
\mathrm{P}=\mathrm{V}^{2} / \mathrm{R}
$$

Or $\quad R=V^{2} / P=6^{2} / 3=12 \Omega$
The internal resistance of the battery always comes in series with the battery. If the internal resistance of the battery is r then total resistance in the circuit will be $R+r$ where R is the external resistance. Thus the current in the circuit is given by using Ohm's law as
$\mathrm{I}=\varepsilon /(\mathrm{R}+\mathrm{r})$
Or $\quad 0.480=6 /(R+r)$
Gives $R+r=6 / 0.480=12.5 \Omega$
Substituting value of resistance of the bulb we get
$r=12.5-12=0.5 \Omega$
Thus the internal resistance of the battery is $\mathbf{0 . 5} \Omega$

Q4- A 9 volt battery has 5 W internal resistance and is supplying current to a 25 W load. Find: a) the current. b) the terminal voltage of the battery. c) the power delivered to the load.
(a) The current in the circuit is given by

$$
I=\frac{\varepsilon}{R+r}=\frac{9}{25+5}=0.30 \mathrm{~A}
$$

(b) the terminal voltage of the battery is the same as the voltage across the external resistance, given by

$$
V=I R=\frac{\varepsilon R}{R+r}=\frac{9 * 25}{25+5}=7.5 \mathrm{~V}
$$

The power delivered to the load is given by

$$
\mathrm{P}_{\mathrm{L}}=\mathrm{V} * \mathrm{I}=7.5 * 0.3=\mathbf{2 . 2 5} \mathbf{~ W}
$$

