1. A hydraulic cylinder needs to push 5.5 gallons of fluid (water) per minute at 2000 psi (like pushing the fluid out of a syringe). How big is the outlet port where the fluid leaves the cylinder?

Answer:

Let the cross-section area of the rod is A_{1} and that of the out let port is A_{2}. Let the velocity of the fluid in the two portions be v_{1} and v_{2} respectively.

Equation of continuity;
As the fluid in incompressible the volume of the fluid entering in a particular volume of the tube, in a given time interval must be equal and hence we have the volume of the fluid flown in time Δt

$$
\Delta \mathrm{Q}=\mathrm{A}_{1} \mathrm{~V}_{1} \Delta \mathrm{t}=\mathrm{A}_{2} \mathrm{~V}_{2} \Delta \mathrm{t}
$$

Or the rate of the volume of the fluid flowing is given by

$$
\begin{equation*}
\Delta \mathrm{Q} / \Delta \mathrm{t}=\mathrm{A}_{1} \mathrm{~V}_{1}=\mathrm{A}_{2} \mathrm{~V}_{2} \tag{1}
\end{equation*}
$$

The equation $A_{1} V_{1}=A_{2} V_{2}$ is called equation of continuity.
Considering the non-viscous incompressible fluid the pressure and the velocity of the fluid at different points can be given by Bernoulli's equation.

Bernoulli's equation for flow of an ideal liquid (non-viscous, incompressible) can be stated in different ways

1. if we consider energy of a mass m of the fluid, having volume V, v is the flow velocity at height h, then we can write $P V+m g h+(1 / 2) m v^{2}=$ constant (for all points).
2. If the energy per unit volume is considered then the same equation is written as $\quad \mathrm{P}+\rho \mathrm{gh}+(1 / 2) \rho \mathrm{v}^{2}=$ constant; (dividing equation 1 . by V) where ρ is the density of the fluid, and
3. If the pressure and velocity is measured in terms of height (heads) then
$\mathrm{P} /(\rho \mathrm{g})+\mathrm{h}+\mathrm{v}^{2} / 2 \mathrm{gh}=$ constant \quad (dividing equation 2 . by $\rho \mathrm{g}$)
According to the given data we have to choose the equation.

Using the second equation for the inlet and the outlet ports

$$
P_{1}+\rho g h_{1}+(1 / 2) \rho v_{1}^{2}=P_{2}+\rho g h_{2}+(1 / 2) \rho v_{2}^{2}
$$

If the average height of the two ports (horizontal position) are same $h_{1}=h_{2}$ and the equation becomes

Or $\quad(1 / 2) \rho\left(v_{2}{ }^{2}-v_{1}{ }^{2}\right)=\left(P_{1}-P_{2}\right)=\Delta P$ (say)

Substituting the value of v_{2} from equation 1 we have

$$
\begin{array}{ll}
& (1 / 2) \rho\left\{\left(\mathrm{A}_{1} \mathrm{v}_{1} / \mathrm{A}_{2}\right)^{2}-\mathrm{v}_{1}^{2}\right\}=\Delta \mathrm{P} \\
\text { Or } & (1 / 2) \rho \mathrm{v}_{1}^{2}\left\{\left(\mathrm{~A}_{1} / \mathrm{A}_{2}\right)^{2}-1\right\}=\Delta \mathrm{P} \\
\text { Or } & v_{1}=\sqrt{\frac{2 \Delta P A_{2}^{2}}{\rho\left(A_{1}^{2}-A_{2}^{2}\right)}}
\end{array}
$$

This is the standard form (may see Venturi Meter)
Now come to our problem, if the area of outlet port A_{2} is much smaller then $A_{1}, A_{2}{ }^{2}$ can be neglected as compared to $\mathrm{A}_{1}{ }^{2}$ and the equation becomes

$$
v_{1}=\sqrt{\frac{2 \Delta P A_{2}^{2}}{\rho A_{1}^{2}}}
$$

Gives $\quad A_{2}^{2}=\frac{\rho A_{1}^{2} v_{1}^{2}}{2 \Delta P}=\frac{\rho(\Delta Q / \Delta t)^{2}}{2 \Delta P}$
or $\quad A_{2}=\sqrt{\frac{\rho}{2 \Delta P}} *(\Delta Q / \Delta t)$
Now
$1 \mathrm{psi}=1 \mathrm{lbf} / \mathrm{in}^{2}=6,894.75729 \mathrm{~Pa}$
1 gallon $=231 \mathrm{in}^{3}=3.785 \mathrm{~L}=3.785 * 10^{-3} \mathrm{~m}^{3}$.
The pressure at the outlet is equal to the atmospheric pressure $=14.223$ psi hence

$$
\begin{aligned}
& \Delta \mathrm{P}=2000-14.223=1985.777 \mathrm{psi}=13.69 * 10^{6} \mathrm{~Pa} \\
& \Delta \mathrm{Q} / \Delta \mathrm{t}=5.5 * 3.785 * 10^{-3} / 60=3.47 * 10^{-4} \mathrm{~m}^{3} / \mathrm{s} .
\end{aligned}
$$

Consider water as a fluid then

$$
\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}
$$

Gives

$$
A_{2}=\sqrt{\frac{\rho}{2 \Delta P}} *(\Delta Q / \Delta t)=\sqrt{\frac{1000}{2 * 13.69 * 10^{6}}} *\left(3.47 * 10^{-4}\right)=2.097 * 10^{-6} \mathrm{~m}^{2}=2.097 \mathrm{~mm}^{2}
$$

