1. A hydraulic cylinder needs to push 5.5 gallons of fluid (water) per minute at 2000 psi (like pushing the fluid out of a syringe). How big is the outlet port where the fluid leaves the cylinder?

Answer:

Let the cross-section area of the rod is A_1 and that of the out let port is A_2 . Let the velocity of the fluid in the two portions be v_1 and v_2 respectively.

Equation of continuity;

As the fluid in incompressible the volume of the fluid entering in a particular volume of the tube, in a given time interval must be equal and hence we have the volume of the fluid flown in time Δt

 $\Delta Q = A_1 V_1 \Delta t = A_2 V_2 \Delta t$

Or the rate of the volume of the fluid flowing is given by

The equation $A_1V_1 = A_2V_2$ is called equation of continuity.

Considering the non-viscous incompressible fluid the pressure and the velocity of the fluid at different points can be given by Bernoulli's equation.

Bernoulli's equation for flow of an ideal liquid (non-viscous, incompressible) can be stated in different ways

- 1. if we consider energy of a mass m of the fluid, having volume V, v is the flow velocity at height h, then we can write $PV + m g h + (1/2) mv^2 = constant$ (for all points).
- 2. If the energy per unit volume is considered then the same equation is written as $P + \rho g h + (1/2) \rho v^2 = constant$; (dividing equation 1. by V) where ρ is the density of the fluid, and
- 3. If the pressure and velocity is measured in terms of height (heads) then $P/(\rho g) + h + v^2/2gh = constant$ (dividing equation 2. by ρg)

According to the given data we have to choose the equation.

	1													-	-											
	-	-	-	-	-	-	-	-	-	-	-	-			_	_	_							_		
	- 1	-	-	-	-	-	-	-	-	-	-	-	-	-7	-						 			Λ.		-
	- 1	-	-	-	-	-	-	-	-	-	-		-	_	-	-	-	-	-	-	 		-	U.	-	-
	_	_	_	_	_	_	_	_	_	_				-	-	-	-	-	-	-	 _	_	_	<u> </u>	-	-
	- 1	-	_	_	_	_	-	_		-			-	_	_	-										

Using the second equation for the inlet and the outlet ports

$$P_1 + \rho g h_1 + (1/2) \rho v_1^2 = P_2 + \rho g h_2 + (1/2) \rho v_2^2$$

If the average height of the two ports (horizontal position) are same $h_1 = h_2$ and the equation becomes

$$P_1 + (1/2) \rho v_1^2 = P_2 + (1/2) \rho v_2^2$$

Or $(1/2) \rho(v_2^2 - v_1^2) = (P_1 - P_2) = \Delta P \text{ (say)}$

Substituting the value of v_2 from equation 1 we have

(1/2)
$$\rho\{(A_1v_1/A_2)^2 - v_1^2\} = \Delta P$$

Or $(1/2) \rho v_1^2 \{ (A_1/A_2)^2 - 1 \} = \Delta P$

Or
$$v_1 = \sqrt{\frac{2\Delta P A_2^2}{\rho (A_1^2 - A_2^2)}}$$

This is the standard form (may see Venturi Meter)

Now come to our problem, if the area of outlet port A_2 is much smaller then A_1 , A_2^2 can be neglected as compared to A_1^2 and the equation becomes

$$v_1 = \sqrt{\frac{2\Delta P A_2^2}{\rho A_1^2}}$$

Gives
$$A_2^2 = \frac{\rho A_1^2 v_1^2}{2\Delta P} = \frac{\rho (\Delta Q / \Delta t)^2}{2\Delta P}$$

or $A_2 = \sqrt{\frac{\rho}{2\Delta P}} * (\Delta Q / \Delta t)$

Now

1 psi = 1 lbf/in² = 6,894.75729 Pa 1 gallon =231 in³ = $3.785 \text{ L} = 3.785^{10^{-3}} \text{ m}^{3}$.

The pressure at the outlet is equal to the atmospheric pressure = 14.223 psi hence $\Delta P = 2000 - 14.223 = 1985.777 \text{ psi} = 13.69*10^6 \text{ Pa}$

 $\Delta Q/\Delta t = 5.5*3.785*10^{-3}/60 = 3.47*10^{-4} \text{ m}^3/\text{s}.$ Consider water as a fluid then

$$\rho = 1000 \text{ kg/m}^3$$

Gives

$$A_2 = \sqrt{\frac{\rho}{2\Delta P}} * (\Delta Q / \Delta t) = \sqrt{\frac{1000}{2*13.69*10^6}} * (3.47*10^{-4}) = 2.097*10^{-6}m^2 = 2.097mm^2$$
