Q1- A proton is released from rest where an electric field of 640 N/C exists. (a) what is the acceleration of proton? (b) how long does it take to reach a speed of $1.2 * 106 \mathrm{~m} / \mathrm{s}$ (c) How much distance does it travel durion this time.
(a) The force experiendec be a charge q in the field E is given in magnitude by

$$
\mathrm{F}=\mathrm{q}^{*} \mathrm{E}
$$

Hence the force experienced by the Proton of charge $\mathrm{q}=+\mathrm{e}=1.6 * 10^{-19} \mathrm{C}$ will be

$$
F=q^{*} E=1.6 * 10^{-19} * 640=1.024 * 10^{-16} \mathrm{~N} .
$$

If m is the mass of the proton its acceleration is given by the second law of motion as

$$
\mathrm{a}=\mathrm{F} / \mathrm{m}=\frac{1.024 * 10^{-16} \mathrm{~N}}{1.67 * 10^{-27} \mathrm{~kg}}=6.13 * 10^{10} \mathrm{~m} / \mathrm{s}^{2}
$$

(b) The time taken t to reach the velocity $v=1.2^{*} 10^{6} \mathrm{~m} / \mathrm{s}$ is given by first equation of motion

$$
\mathrm{v}=\mathrm{u}+\mathrm{a} * \mathrm{t}
$$

where u is the initial velocity ($=0$) and a is the acceleration. Hence

$$
1.2 * 10^{6}=0+6.13 * 10^{10} * \mathrm{t}
$$

Gives $t=\frac{1.2 * 10^{6}}{6.13 * 10^{10}}=1.96 * 10^{-5} s=19.6 \mu s$
(c) The distance travelled is given by the second equation of motion as

$$
s=u * t+1 / 2 a * t^{2}
$$

or $\quad s=0 * 1.96 * 10^{-5}+0.5 * 6.13 * 10^{10} *\left(1.96 * 10^{-5}\right)^{2}=11.77 \mathrm{~m}$
4. Consider the following arrangement of charges. Find the total force on the charge q_{2}, where $\mathrm{a}=1.0 \mathrm{~m}$.

The two sides of the traingle are equal, each a and it is aright angled one hence the third side will be $\sqrt{ } 2^{*}$ a according to Pythagauras theorem and the qwo equal angles will be 45° each.

The force of attraction of repulsion between two point charges q_{1} and q_{2} placed at distance ' r ' is given by Coulomb's law and its magnitude is given by

$$
F=\frac{1}{4 \pi \epsilon_{0}} \frac{q_{1} * q_{2}}{r^{2}}
$$

Hence the magnitude of the force between charges q_{1} and q_{2} will be

$$
F_{1}=\frac{1}{4 \pi \epsilon_{0}} \frac{q_{1} * q_{2}}{r^{2}}=9 * 10^{9} * \frac{\left(3.0 * 10^{-6}\right) *\left(2.5 * 10^{-6}\right)}{(\sqrt{2} * 1.0)^{2}}=3.375 * 10^{-2} \mathrm{~N}
$$

As the two charges are positive both, the force is repulsive as shown in the figure.

Similarly force on charge q_{2} due to charge q_{3} will be

$$
F_{2}=\frac{1}{4 \pi \epsilon_{0}} \frac{q_{3} * q_{2}}{r^{2}}=9 * 10^{9} * \frac{\left(-2.0 * 10^{-6}\right) *\left(2.5 * 10^{-6}\right)}{(1.0)^{2}}=-4.5 * 10^{-2} \mathrm{~N}
$$

Negative sign shows that it is attractive force.
Hence total force on charge q_{2} will be the resultant of F_{1} and F_{2} and its magnitude is given by

$$
\begin{array}{ll}
& F=\sqrt{F_{1}^{2}+F_{2}^{2}+2 F_{1} F_{2} \cos 135^{O}} \\
\text { Or } & F=\sqrt{\left(3.375 * 10^{-2}\right)^{2}+\left(4.5 * 10^{-2}\right)^{2}+2 *\left(3.375 * 10^{-2}\right) *\left(4.5 * 10^{-2}\right)(-1 / \sqrt{2})} \\
\text { Or } & F=\sqrt{11.4 * 10^{-4}+20.25 * 10^{-4}-21.48 * 10^{-4}}=3.19 * 10^{-2} \mathrm{~N}
\end{array}
$$

And the direction it makes with F_{2} is given by

$$
\tan \theta=\frac{F_{1} \sin 135}{F_{2}+F_{1} \cos 135}=1.129
$$

Or

$$
\theta=48.5^{\circ} .
$$

