Q- Find the required mass of block A so that when it is released from rest it moves block B by 1 m in 2 sec . Block B weights 60 N . Pulleys are massless and no friction. The angle θ is 30°.

Answer:
Upper two pulleys are fixed and the lowest is movable.
The same string is passing through the pulleys and hence the tension T in it is same everywhere (considering the pulleys are mass less and frictionless).

Three parts of the string are supporting the lower pulley and the block A and hence the total upward force on the lower pulley and block A is $3 T$. Let the mass of A is m_{A} and its acceleration is a, then equation of motion for block A can be written as

$$
\begin{equation*}
\mathrm{m}_{\mathrm{A}} \mathrm{~g}-3^{*} \mathrm{~T}=\mathrm{m}_{\mathrm{A}} \mathrm{a} \tag{1}
\end{equation*}
$$

Now if the block A is displaced down by x then the additional string required between the pulleys is $3 x$ (three strings connecting), and hence the length of the string between upper pulley and B will reduced by $3 x$. As the ratio of acceleration is same as ratio of displacement, acceleration of block B will be 3 a.

May be done in this way
If x is the distance of A from the center of pulley E to D then
Total free length of the string is

$$
I=3 x-C E+y_{B}
$$

Differentiating the equation twice wrt t and as I is constant we have

$$
0=3\left(d^{2} x / d t^{2}\right)-0+\left(d^{2} y_{B} / d t^{2}\right)
$$

Or acceleration of B is three times of A. negative sign is because of the direction.

Mass of $B \quad m_{B}=W / g=58.86 / 9.81=6.00 \mathrm{~kg}$
Hence equation of motion of B up the incline can be written as

$$
\begin{equation*}
\mathrm{T}-\mathrm{W} * \sin \theta=\mathrm{m}_{\mathrm{B}} * 3 \mathrm{a} \tag{2}
\end{equation*}
$$

Hence solving the two equations we have

$$
m_{A} g-3 W * \sin \theta=\left(m_{A}+9 m_{B}\right) * a
$$

or $\quad m_{A}=\frac{9 m_{B} a+3 W \sin \theta}{g-a}$
Now the distance moved by B up the incline is 1 m in 2 s from rest we have

$$
\begin{aligned}
& {\left[s=u t+1 / 2 a^{2}\right]} \\
& 1=0+0.5 * 3 a * 2^{2}
\end{aligned}
$$

Gives $a=(1 / 6) \mathrm{m} / \mathrm{s}^{2}$

Substituting values in equation 3 we get

$$
m_{A}=\frac{9 m_{B} a+3 W \sin \theta}{g-a}=\frac{9 * 6.0 *(1 / 6)+3 * 58.86 * 0.5}{9.81-(1 / 6)}=10.1 \mathrm{~kg} .
$$

Hence mass of block A must be 10.1 kg .

