Q- Two speakers are driven by the same oscillator of frequency 200 Hz . They are located horizontally at a distance of 6 meters from each other. Barbara stands in front of one speaker very far away, and walks towards the speaker. How many times will she hear a minimum intensity as she walks from far away towards the speaker and how far is she from the speaker when she hears these minima?

The wavelength is given by

$$
\lambda=\frac{c}{n}=\frac{340}{200}=1.7 \mathrm{~m}
$$

Here c is the velocity of sound in air.

At large distance the path difference for the two waves is nearly zero but when she comes near the speaker 2 the path difference is 6 m .

She will hear minimum intensity where the waves interfere destructively and these distances are when the path differences are
Odd multiple of $\lambda / 2$
Hence the possible distances x can be calculated as
(1) $\delta_{1}=\sqrt{x^{2}+6^{2}}-x=\frac{\lambda}{2}=0.85 \mathrm{~m}$;
or $\quad x^{2}+6^{2}=(x+0.85)^{2}$
Or $\quad x^{2}+6^{2}=x^{2}+1.7 x+0.7225$
Gives $x_{1}=20.75 \mathrm{~m}$
(2) $\delta_{2}=\sqrt{x^{2}+6^{2}}-x=\frac{3 \lambda}{2}=2.55 \mathrm{~m}$;
or $\quad x^{2}+6^{2}=(x+2.55)^{2}$
Or $\quad x^{2}+6^{2}=x^{2}+5.1 x+6.5025$
Gives $x_{2}=5.784 \mathrm{~m}$
(3) $\delta_{3}=\sqrt{x^{2}+6^{2}}-x=\frac{5 \lambda}{2}=4.25 \mathrm{~m}$;
or $\quad x^{2}+6^{2}=(x+4.25)^{2}$
Or $\quad x^{2}+6^{2}=x^{2}+8.5 x+18.0625$
Gives $x_{3}=2.1103 \mathrm{~m}$
(4) $\quad \delta_{4}=\sqrt{x^{2}+6^{2}}-x=\frac{7 \lambda}{2}=5.95 \mathrm{~m}$.
or $\quad x^{2}+6^{2}=(x+5.95)^{2}$
Or $\quad x^{2}+6^{2}=x^{2}+11.9 x+35.4025$
Gives $x_{3}=0.05 . \mathrm{m}$
For next value the path difference is more than 6 m which is not possible hence only four times the minimum intensity will be heard and the corresponding distances are as above.

