Q1- An airplane has a mass of $3.1 \times 10^{4} \mathrm{~kg}$ and takes off under the influence of a constant net force of $3.7 \times 10^{4} \mathrm{~N}$. What is the net force that acts on the plane's 78 kg pilot?

Answer:

The acceleration of the airplane is given by using Newton's second law of motion. The force acting is $F=3.7 * 10^{4} \mathrm{~N}$, mass of the plane $\mathrm{M}=3.1^{*} 10^{4} \mathrm{~kg}$ and hence its acceleration is given by

$$
a=F / M=\left(3.7 * 10^{4}\right) /\left(3.1 * 10^{4}\right)=1.194 \mathrm{~m} / \mathrm{s}^{2}
$$

Now as the pilot is in the plane and will have same acceleration, the resultant (net) force on the pilot is given by the same equation as

$$
\mathrm{F}_{\mathrm{p}}=\mathrm{m} * \mathrm{a}
$$

Here m is the mass of the pilot.
Gives $F_{p}=78 * 1.194=93.1 \mathrm{~N}$.

Q2- In the amusement park ride known as Magic, powerful magnets accelerate a car and it's riders from rest to $45 \mathrm{~m} / \mathrm{s}$ in 7 seconds. The mass of the car and riders is $5.5 \times 10^{3} \mathrm{~kg}$. Find the average net force exerted on the car and riders by the magnets?

Answer:
The acceleration of the car can be calculated using first equation of motion

$$
v=u+a * t
$$

Initial velocity of the car

$$
\begin{aligned}
& u=0 \\
& v=45 r \\
& t=7 \mathrm{~s} .
\end{aligned}
$$

$$
\text { Final velocity of the car } \quad v=45 \mathrm{~m} / \mathrm{s}
$$

Time interval

Substituting in equation of motion we have

$$
45=0+a * 7
$$

or $\quad a=45 / 7=6.428 \mathrm{~m} / \mathrm{s}^{2}$
Now according Newton's law of motion

$$
\mathrm{F}=\mathrm{m} * \mathrm{a}=5.5^{*} 10^{3} * 6.428=35354.0 \mathrm{~N}
$$

Hence the average force on the car and the riders is 35354 N .

