A half-ring with a radius 9 cm has a total charge $10 \mu \mathrm{C}$ uniformly distributed along its length.
(a) What is the linear charge density on the ring?
(b) What is the magnitude of the electric field at the center of the half-ring?
(a) The length of the half ring will be given by
$\mathrm{L}=\pi \mathrm{R}=3.14 * 0.09 \mathrm{~m}=0.28 \mathrm{~m}$
Hence the charge per unit length $\lambda=Q / L=10^{*} 10^{-6} / 0.28=$

$35.7 * 10^{-6} \mathbf{~ C / m}$

(b) As the charge is symmetrically distributed about x axis the field in y and z direction has a resultant component zero and hence only the components in x directions are to be added.

Consider an infinitesimally small element subtending angle d θ
 at the center of the ring P as in diagram. The length of the ring will be $\mathrm{R}^{*} \mathrm{~d} \theta$ and hence charge on the element will be

$$
d Q=\lambda * \operatorname{Rd} \theta
$$

Hence the field due to the element charge will be

$$
d E=\frac{\lambda R * d \theta}{4 \pi \in_{0} R^{2}}=\frac{\lambda * d \theta}{4 \pi \in_{0} R}
$$

Component of this field in x direction will be

$$
d E_{x}=d E \cos \theta=\frac{\lambda * \cos \theta * d \theta}{4 \pi \in_{0} R}
$$

Hence field in x direction will be

$$
\begin{aligned}
E_{x} & =\int d E_{x}=\frac{\lambda}{4 \pi \epsilon_{0} R} \int_{-\pi / 2}^{\pi / 2} \cos \theta * d \theta=\frac{\lambda}{4 \pi \epsilon_{0} R}[\sin \theta]_{-\pi / 2}^{\pi / 2}=\frac{\lambda}{4 \pi \epsilon_{0} R} * 2 \\
\text { Or } \quad E_{x} & =\frac{\lambda}{4 \pi \epsilon_{0} R} * 2=\frac{9 * 10^{9} * 35.7 * 10^{-6} * 2}{0.09}=7.14 * 10^{6} \mathrm{~N} / \mathrm{C}
\end{aligned}
$$

Due to symmetry of the charge distribution Ey and Ez both are zero hence the total field at P will be that in x direction and is

$$
E=7.14 * 10^{6} \mathrm{~N} / \mathrm{C}
$$

