Q- The tenth brightest member of the cluster of galaxies known as Abell1185 has a brightness of $2.70 * 10^{10} \mathrm{Wm}^{-2}$. A line in its spectrum at a wavelength of 503.1 nm is identified as being a member of the Balmer series that has a rest wavelength of 486.1 nm . Let the luminosity of the tenth brightest galaxy in any cluster is $1.00 * 10^{-41} \mathrm{~W}$, the speed of light c is $3.00 * 10^{5} \mathrm{~km} / \mathrm{s}$ and 1 Mpc $=3.09 * 10^{22} \mathrm{~m}$.
a) Calculate the distance of the Abell1185 cluster of galaxies in metres and in mega-parsecs.

The radiant power P from a star (or galaxy) is the energy emitted by the star (or galaxy) per unit time (W). This energy is distributed in all direction and hence the intensity I (The amount of energy incident per unit area per unit time Wm^{-2}) at a distance r is given by

$$
I=\frac{P}{A}=\frac{P}{4 \pi r^{2}}
$$

This gives the distance of the galaxy from the earth as

$$
r=\sqrt{\frac{P}{4 \pi I}}=\sqrt{\frac{2.70 * 10^{10}}{4 * 3.14 * 1.0 * 10^{-41}}}=1.47 * 10^{25} \mathrm{~m}
$$

The distance will be given in mega parsecs as

$$
r=\frac{1.47 * 10^{25}}{3.09 * 10^{22}}=475.7 \text { Mega parsecs. }
$$

b) Calculate the redshift of the tenth brightest galaxy in the Abell1185 cluster.

The increase in the wavelength (or decrease in frequency) of light emitted by a receding source as compared to a stationary source is called red shift. Thus the red shift is given by

$$
\Delta \lambda=\lambda^{\prime}-\lambda=503.1-486.1=17.0 \mathrm{~nm} .
$$

c) Calculate the speed of recession in m / s

When the source is receding away, the red shift is given by the formula

$$
\frac{\Delta \lambda}{\lambda}=\frac{v}{c}
$$

Where v is the velocity of the source and c is the speed of light. λ is the rest wavelength of the light.
Hence the speed of the galaxy is given by

$$
\frac{17}{486.1}=\frac{v}{3.0 * 10^{5}}
$$

Or $\quad v=\frac{17}{486.1} * 3.0 * 10^{5}=1.05 * 10^{4} \mathrm{~km} / \mathrm{s}=1.05 * 10^{7} \mathrm{~m} / \mathrm{s}$
d) Calculate the value of Hubble constant.

The mathematical expression for Hubble's Law is as follows:
$v=H^{*} D$

Where v is the recessional velocity, typically expressed in km/s. H_{0} is Hubble's constant.

Hence the Hubble constant is given by

$$
H=\frac{v}{D}=\frac{1.05 * 10^{4} \mathrm{~km} / \mathrm{s}}{1.47 * 10^{22} \mathrm{~km}}=7.14 * 10^{-19} \mathrm{~s}^{-1}
$$

