Q- In the figure $\mathrm{q}_{1}=4 \mu \mathrm{C}, \mathrm{q}_{2}=-3 \mu \mathrm{C}$ and $\mathrm{q}_{3}=\mathrm{q}_{4}=-2 \mu \mathrm{C}$.
a. What is the magnitude of force exerted on charge q_{1} by charge q_{2} ?
b. What is the magnitude of force exerted on charge q_{1} by charge q_{3} ?
c. What is the horizontal component of force exerted on q_{1} by q_{3} ?
d. What is the resultant force exerted on charge q_{1} by the other three charges?
e. q_{1} were replaced by a charge of $-4 \mu \mathrm{C}$, what would be the resultant force exerted on it by the other three charges?
a. The force of electric interaction between two point charges q_{1} and q_{2} placed at a distance r is given by Coulomb's law as

$$
F=\frac{q_{1} q_{2}}{4 \pi \in_{0} r^{2}}
$$

$$
\left[\frac{1}{4 \pi \epsilon_{0}}=9 * 10^{9}\right]
$$

Substituting the values we get the magnitude of the force between q_{1} and q_{2} as

$$
F=\frac{9 * 10^{9} * 4 * 10^{-6} *\left(-3 * 10^{-6}\right)}{\left(10 * 10^{-2}\right)^{2}}=-10.8 \mathrm{~N}
$$

The negative sign is showing that the force is attractive.
b. $\quad F=\frac{q_{1} q_{3}}{4 \pi \in_{0} r^{2}}$

Substituting the values we get the magnitude of the force between q_{1} and q_{2} as

$$
F=\frac{9 * 10^{9} * 4 * 10^{-6} *\left(-2 * 10^{-6}\right)}{\left(10 * 10^{-2}\right)^{2}}=-7.2 \mathrm{~N}
$$

c. As the force is attractive and on q_{1} is in the direction from q_{1} to q_{3}, which makes 135° from the x axis hence its component in the x direction will be $F^{*} \cos 135^{\circ}$

Or $\quad 7.2^{*} \cos 135^{\circ}=7.2^{*}(-0.707)=-5.09 \mathrm{~N}$
The negative sign shows that the component is in negative x direction.
d. The force due to two charges q_{3} and q_{4} are equal in magnitude and as they are making same angle with x axis $\left(45^{\circ}\right)$ their x components and y components are equal. The x components are in same direction (negative x) but y components are opposite and hence cancel each other's effect. Thus the resultant force on q_{1} is the resultant of the force due to q_{2} and the x components of the force due to q_{3} and q_{4} and which is equal to

$$
F=F_{12 x}+F_{13 x}+F_{14 x}
$$

Or $\quad \mathrm{F}=10.8+(-5.09)+(-5.09)=0.62 \mathrm{~N}$ (positive x direction)
e. If q_{1} is replaced by -4 mC means the charge is same in magnitude but opposite in sign. Thus the magnitude of the force will remain same and its direction will be reversed. Hence the force will be 0.62 N in negative x direction.

