Q- Two point charges $\mathrm{q}_{1}=(+) 1 \mu \mathrm{C}$ and $\mathrm{q}_{2}=(+) 9 \mu \mathrm{C}$ are separated by a distance of 50 cm .
(a) Find the magnitude and direction of the Coulomb force on each charge due to the other.
(b) At what point on the line joining the two charges should a charge $q=(-) 1 \mu C$ be placed so that the net force on q due to q_{1} and q_{2} is zero?
(c) Find the location of charge q for zero force if the charge q_{2} is replaced by a charge of (-) $9 \mu \mathrm{C}$.

If two charges of magnitude q_{1} and q_{2} are separated by distance r then the force between them is given by Coulomb's law and according to this law, the force of interaction between two point charges is given by

$$
\vec{F}_{21}=\frac{q_{1} q_{2}}{4 \pi \in_{0} \in_{r} r^{2}} \hat{r}
$$

Where F_{21} is the force on charge q_{2} due to charge q_{1} and \hat{r} is the unit vector in the direction of the line joining from charge q_{1} to $\mathrm{q}_{2} . \epsilon_{0}$ is a constant called the permittivity of free space and ϵ_{r} is the relative permittivity (dielectric constant) of the medium. For air or vacuum,
value of ϵ_{r} is $1.0, \frac{1}{4 \pi \epsilon_{0}}=9 * 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}$
Naturally the force F_{12} on charge q_{1} due to q_{2} will be equal in magnitude and opposite in the direction.

Now the force acting on charge q_{2} due to charge q_{1} will be

$$
\vec{F}_{12}=\frac{q_{1} q_{2}}{4 \pi \epsilon_{0} r^{2}} \hat{r}=9 * 10^{9} * \frac{1 * 10^{-6} * 9 * 10^{-6}}{\left(50 * 10^{-2}\right)^{2}} * \hat{r}=0.324 \hat{r} N
$$

Hence the force on charge q_{2} is 0.324 N and is towards right. Similarly

$$
\vec{F}_{12}=\frac{q_{1} q_{2}}{4 \pi \epsilon_{0} r^{2}}(-\hat{r})=-9 * 10^{9} * \frac{9 * 10^{-6} * 1 * 10^{-6}}{\left(50 * 10^{-2}\right)^{2}} * \hat{r}=-0.324 \hat{r} N
$$

Hence the force on charge q_{1} is 0.324 N and is towards left.
(b) The force acting on a point charge due to number of point charges is given by the law of superposition of forces and hence given by the resultant of the forces due to all other charges. Thus the force on q is given by the resultant of the forces due to q_{1} and q_{2}.

Now as charge q is negative and both the other are positive, both charges attracts q and hence the possibility for the forces on q to balance each other is only when q is between q_{1} and q_{2}. Let q is placed at distance x from q_{1} as in figure then force on it due to q_{1} will be

$$
\vec{F}_{1}=\frac{q_{1} q}{4 \pi \in_{0} x^{2}} \hat{r}=9 * 10^{9} \frac{1 * 10^{-6} *\left(-1 * 10^{-6}\right)}{x^{2}} \hat{r}=\frac{9 * 10^{-3}}{x^{2}}(-\hat{r})
$$

And the force due to charge q_{2} will be

$$
\vec{F}_{2}=\frac{q_{2} q}{4 \pi \in_{0}(r-x)^{2}}(-\hat{r})=9 * 10^{9} \frac{9 * 10^{-6} *\left(-1 * 10^{-6}\right)}{(r-x)^{2}}(-\hat{r})=\frac{81 * 10^{-3}}{(r-x)^{2}}(\hat{r})
$$

The negative sign of unit vector r is because q is on the left of q_{2}.

The distance x is such that the net force is zero, hence we have
$\vec{F}_{1}+\vec{F}_{2}=0$
Or $\quad \frac{9 * 10^{-3}}{x^{2}}(-\hat{r})+\frac{81 * 10^{-3}}{(r-x)^{2}}(\hat{r})=0$
Gives $\frac{(r-x)^{2}}{x^{2}}=9$
Or $\quad \frac{(r-x)}{x}=3$
[taking appropriate positive sign only]
Gives $x=r / 4=50 / 4=12.5 \mathrm{~cm}$.
Hence q will experience zero force at 12.5 cm from q_{1}, towards q_{2}.
(c) If the charge q_{2} is $-9 \mu \mathrm{C}$, it will repel q and hence for zero force q should be on the same side of q_{1} and q_{2}. If it is at right of both, q_{2} (larger in magnitude) is nearer and F_{2} will be always greater than F_{1}. Hence q must be on the left of both q_{1} and q_{2} as in figure. Force on q due to charge q_{1} will be

$$
\vec{F}_{1}=\frac{q_{1} q}{4 \pi \epsilon_{0} x^{2}}(-\hat{r})=9 * 10^{9} \frac{1 * 10^{-6} *\left(-1 * 10^{-6}\right)}{x^{2}}(-\hat{r})=\frac{9 * 10^{-3}}{x^{2}}(\hat{r})
$$

The negative sign of unit vector r is because q is on the left of q_{1}.
And the force due to charge q_{2} will be (the distance or q from q_{2} is $\mathrm{r}+\mathrm{x}$)

$$
\vec{F}_{2}=\frac{q_{2} q}{4 \pi \epsilon_{0}(r+x)^{2}}(-\hat{r})=9 * 10^{9} \frac{\left(-9 * 10^{-6}\right) *\left(-1 * 10^{-6}\right)}{(r+x)^{2}}(-\hat{r})=\frac{81 * 10^{-3}}{(r+x)^{2}}(-\hat{r}) \text { The }
$$

negative sign is because q is on the left of q_{2}.
The distance x is such that the net force is zero, hence we have

$$
\vec{F}_{1}+\vec{F}_{2}=0
$$

Or $\quad \frac{9 * 10^{-3}}{x^{2}}(\hat{r})+\frac{81 * 10^{-3}}{(r+x)^{2}}(-\hat{r})=0$
Gives $\frac{(r+x)^{2}}{x^{2}}=9$
Or $\quad \frac{(r+x)}{x}=3$
[taking appropriate positive sign only]
Gives $x=r / 2=50 / 2=25.0 \mathrm{~cm}$.
Hence q will experience zero force at 25.0 cm from q_{1}, away from q_{2}.

