Q- An aluminum rod has a resistance of $1.234 \Omega$ at $20.0^{\circ} \mathrm{C}$. Calculate the resistance of the rod at $120^{\circ} \mathrm{C}$ by accounting for the changes in both the resistivity and its dimensions.
(Resistivity of aluminum at $20^{\circ} \mathrm{C}$ is $2.75 * 10^{-8} \Omega \mathrm{~m}$, temperature coefficient of resistivity is $4.4 * 10^{-3} /{ }^{\circ} \mathrm{C}$ and the coefficient of linear expansion of aluminum is $\alpha=23^{*} 10^{-6} /{ }^{\circ} \mathrm{C}$ )

As the temperature coefficient of resistivity if the increase in the resistivity per unit resistivity per degree increase in temperature we may write it as

$$
\rho_{\text {coeff }}=\frac{\Delta \rho}{\rho * \Delta \theta}
$$

Or $\quad \Delta \rho=\rho * \rho_{\text {coeff }} * \Delta \theta$
Hence increase in resistivity of aluminum with increase in temperature by (120-20) = $100^{\circ} \mathrm{C}$ will be

$$
\Delta \rho=\rho * 4.4 * 10^{-3 *} 100=0.44 \rho
$$

Hence resistivity at $120^{\circ} \mathrm{C}$ will be

$$
\rho^{\prime}=\rho+0.44 \rho=1.44 \rho
$$

Let the length of the rod is L and area of cross section be A at $20^{\circ} \mathrm{C}$ than resistance of the rod at $20^{\circ} \mathrm{C}$ will be

$$
\begin{equation*}
\mathrm{R}=\rho^{*} \mathrm{~L} / \mathrm{A}=1.234 \Omega \tag{1}
\end{equation*}
$$

Now the coefficient of linear expansion of the aluminum is $\alpha=23 * 10^{-6} /{ }^{\circ} \mathrm{C}$
The new length will be $L+L^{*} \alpha^{*} 100=L$ (1.0023)
As the coefficient of thermal expansion of area $\beta=2 \alpha$, the new area of cross section will be

$$
\mathrm{A}+\mathrm{A} * 2 \alpha^{*} 100=\mathrm{A}(1.0046)
$$

Hence the resistance of the rod at $120^{\circ} \mathrm{C}$ will be

$$
\mathrm{R}^{\prime}=1.44 \rho^{*} \mathrm{~L}^{*} 1.0023 /(\mathrm{A} * 1.0046)
$$

Or

$$
R^{\prime}=(\rho L / A) * 1.44 * 1.0023 / 1.0046
$$

Or $\quad R^{\prime}=1.234 * 1.4367=1.7729 \Omega$.

