Q1- A cell phone broadcasts 800 MHz signal. If it is operated from the space between two massive radio-wave absorbing buildings with 15 m space between them, what is the angular width of the electromagnetic wave after it emerges from between the buildings?

Here the space between the buildings is behaving like a slit and it produces diffraction of radio waves.

The angular width of the central maximum in a single slit diffraction is given by

$$
\theta=2 \lambda / \mathrm{d}
$$

Here λ is the wavelength and d is the width of the slit.
As we know

$$
\begin{aligned}
& \mathrm{c}=\mathrm{n} \lambda \quad \text { where } \mathrm{c} \text { is the wave velocity and } \mathrm{n} \text { is the frequency hence } \\
& \lambda=\mathrm{c} / \mathrm{n}=3 * 10^{8} / 800 * 10^{6}=3 / 8 \text { meter (EM waves have speed of light) }
\end{aligned}
$$

Now the angular width of the central maximum is

$$
\theta=2 \lambda / d \quad \text { where } d \text { is the width of the slit. }
$$

Or $\quad \theta=2 *(3 / 8) / 15=0.05$ radian $=2.86^{0}$

Q2- How far behind the pinhole should the viewing screen be placed to photograph a circular diffraction pattern with central maxima of diameter of 1.0 cm , if the wavelength of the light used is 633 nm and the diameter of the pinhole is 0.12 mm .

The central maximum is extended from center to the first minimum, angler position of which is given by

$$
\operatorname{Sin} \theta=1.22^{*} \lambda / d \quad \text { where } d \text { is the diameter of aperture. }
$$

Now if the radius of the first minimum is $R(=1.0 / 2=0.5 \mathrm{~cm})$ on the screen at distance D then

$$
\tan \theta=R / D \quad \text { and } \sin \theta=\frac{R}{\sqrt{R^{2}+D^{2}}} \text { hence }
$$

$$
\frac{R}{\sqrt{R^{2}+D^{2}}}=1.22 * \lambda / \mathrm{d}
$$

Squaring the equation we get

$$
R^{2}+D^{2}=(R d / 1.22 * \lambda)^{2}
$$

Or $\quad D^{2}=(R d / 1.22 * \lambda)^{2}-R^{2}$

$$
\mathrm{D}=R \sqrt{\left(\frac{d}{1.22 \lambda}\right)^{2}-1}=0.5 * \sqrt{\left(\frac{0.12 * 10^{-3}}{1.22 * 633 * 10^{-9}}\right)^{2}-1}=0.5 * \sqrt{(155.38)^{2}-1}=77.69 \mathrm{~m}
$$

