Q1- A particle moves in simple harmonic motion with a frequency of 1.80 Hz and amplitude of 6.00 cm . What is it maximum speed of the particle?

The maximum speed of a particle in a SHM is given by

$$
V_{\max }=A \omega
$$

Here A is the amplitude and ω is the angular frequency given by $2 \pi^{*}$ frequency
Now $\quad \omega=2 \pi *$ frequency $=2 * 3.14 * 1.80=11.3 \mathrm{rad} / \mathrm{s}$.
Hence the maximum speed will be

$$
\mathrm{V}_{\max }=\mathrm{A} \omega=(6.00 \mathrm{~cm})^{*}(11.3 \mathrm{radians} / \mathrm{s})=\mathbf{6 7 . 8} \mathbf{~ c m} / \mathrm{s}
$$

Q2- A transverse wave on a string is described by the following wave function.

$$
y=(0.115 \mathrm{~m}) \sin \left(3.14^{*} x / 8+12.56 t\right)
$$

(a) Determine the transverse speed and acceleration of an element of the string at $t=$ 0.280 s for the point on the string located at $x=1.80 \mathrm{~m}$.

$$
y=(0.115 \mathrm{~m}) \sin (3.14 * x / 8+12.56 t)
$$

So $\quad v(x, t)=d y / d t=(0.115 \mathrm{~m}) \cos (3.14 * x / 8+12.56 t) * 12.56$
Or $\quad \mathrm{v}=12.56(0.115) \cos (3.14 * x / 8+12.56 t)$
Substituting the values of x and t in equation (1) we have

$$
v=12.56 * 0.115 * \cos [(3.14 * 1.80 / 8)+(4 * 3.14 * 0.280)]
$$

Or $\quad v=1.44 \cos (4.22 \mathrm{rad})=1.44 * \cos 242.1^{\circ}$
Or $\quad \mathbf{v}=\mathbf{- 0 . 6 7 4} \mathbf{m} / \mathbf{s}$
And the acceleration is given by

$$
\begin{equation*}
a=d v / d t=12.56(0.115 \mathrm{~m})[-\sin (3.14 * x / 8+12.56 t)] * 12.54 \text { using equation (1) } \tag{2}
\end{equation*}
$$

Or $\quad a=-157.7(0.115 m) \sin \left(3.14^{*} x / 8+12.56 t\right)$
Substituting the values in equation 2 we get

$$
a=-157.7 * 0.115 \sin (4.22 \mathrm{rad})
$$

Or $\quad a=-18.1 \sin 242.1^{0}=16 \mathrm{~m} / \mathrm{s}^{2}$.
(b) What are the wavelength, period, and speed of propagation of this wave?

The general form of transverse wave equation is given by

$$
y=A \sin (k x-\omega t)
$$

Here K is the wave constant given by $k=2 \pi / \lambda$ and ω is angular frequency.
Thus comparing with our wave equation
the force constant $\mathrm{k}=2 \pi / \lambda=3.14 / 8$ Gives $\lambda=16 \mathrm{~m}$
And angular frequency $\omega=12.56$ Gives period $\mathrm{T}=2 \pi / \omega=1 / 2 \mathrm{sec}$.
And the speed of propagation $\mathrm{c}=\lambda / \mathrm{T}=32 \mathrm{~m} / \mathrm{s}$

