Q- A rocket rises vertically from rest, with an acceleration of $3.2 \mathrm{~m} / \mathrm{s}^{2}$ until it runs out of fuel at an altitude of 1200 m . After this point, its acceleration is that of gravity, downward.
(a) What is the velocity of the rocket when it runs out of fuel?

Initial velocity of the rocket $\quad u=0$
Acceleration of the rocket $\quad a=3.2 \mathrm{~m} / \mathrm{s}^{2}$
[upward hence positive]
Displacement during the first lap
$\mathrm{h}=1200 \mathrm{~m}$
Final velocity of the rocket (say) $\quad v=$?
Using the third equation of motion we have

$$
\begin{aligned}
v^{2} & =0+2 * \mathrm{a} * \mathrm{~h} \\
\text { Or } \quad v & =\sqrt{2 a h}=\sqrt{2 * 3.2 * 1200}=87.64 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(b) How long does it take it to reach this point?

Time taken t to reach point is given by the second equation of motion as

$$
\begin{array}{rlrl}
& & \mathrm{s} & =\mathrm{ut}+1 / 2 \mathrm{at}^{2} \\
\text { or } & \mathrm{h} & =0+1 / 2 \mathrm{a}^{* \mathrm{t}^{2}} \\
\text { or } & t & =\sqrt{\frac{2 h}{a}}=\sqrt{\frac{2 * 1200}{3.2}}=27.39 \mathrm{~s}
\end{array}
$$

(c) What maximum altitude does the rocket reach?

After 1200 m of height it will rise up till its velocity becomes zero and hence the height reached after it runs out of the fuel h^{\prime} will be given by the third equation as

$$
\left[v^{2}=u^{2}+2 * a * s\right]
$$

Or $\quad 0=(87.64)^{2}+2^{*}(-9.8)^{*} h^{\prime}$
Gives $h^{\prime}=7680 / 19.6=391.84 \mathrm{~m}$.
Hence maximum altitude reached by the rocket will be

$$
h+h^{\prime}=1200+391.84=1591.84 m
$$

(d) What is the total time that it takes to reach maximum altitude?

Time taken t^{\prime} from 1200 m height to the maximum altitude (velocity is zero) is given by The first equation of motion as [$\mathrm{v}=\mathrm{u}+\mathrm{a}^{*} \mathrm{t}^{\prime}$]

Or $\quad 0=87.64+(-9.8) * t^{\prime}$
Or

$$
\mathrm{t}^{\prime}=87.64 / 9.8=8.94 \mathrm{~s} .
$$

Hence the total time taken to reach the maximum altitude will be

$$
\mathrm{t}+\mathrm{t}^{\prime}=27.39+8.94=36.33 \mathrm{~s} .
$$

(e) With what velocity does the rocket strike the earth?

Consider the motion from the maximum altitude with downward direction positive, the initial velocity is zero, the displacement $\mathrm{s}=1238.27 \mathrm{~m}$, and the acceleration is $9.8 \mathrm{~m} / \mathrm{s}^{2}$, hence the final velocity at the surface of the earth v is given by

$$
v^{2}=u^{2}+2 * a * s
$$

or

$$
\begin{aligned}
& v^{2}=0+2 * 9.8 * 1591.84=31200 \\
& v=176.64 \mathrm{~m} / \mathrm{s} .
\end{aligned}
$$

or
(f) What is the total time that it is in the air?

Time to reach ground from the maximum altitude $\mathrm{t}^{\prime \prime}$ is given by

$$
\begin{aligned}
& {\left[s=u t+1 / 2 a t^{2}\right]} \\
& 1591.84=0+0.5 * 9.8^{* t^{\prime \prime 2}}
\end{aligned}
$$

Gives $\mathrm{t}^{\prime \prime}=18.02 \mathrm{~s}$
Hence the total time in air will be

$$
\mathrm{t}+\mathrm{t}^{\prime}+\mathrm{t}^{\prime \prime}=27.39+8.94+18.02=54.35 \mathrm{~s} .
$$

