Q- A police car is traveling at a velocity of $18.0 \mathrm{~m} / \mathrm{s}$ due north, when a car zooms by at a constant velocity of $41.0 \mathrm{~m} / \mathrm{s}$ due north. After a reaction time 0.900 s the policeman begins to pursue the speeder with an acceleration of $4.00 \mathrm{~m} / \mathrm{s}^{2}$. Including the reaction time, how long does it take for the police car to catch up with the speeder?

The police car will catch up the speeder in a time when both will cover a same distance.
Let the total time taken is t (sec)

The velocity of the speeder's car $=41.0 \mathrm{~m} / \mathrm{s}$
Hence the distance covered by him in time t will be given by

$$
\begin{equation*}
\mathrm{S}=\text { velocity } * \text { time }=41.0 * \mathrm{t} \tag{1}
\end{equation*}
$$

The initial velocity of the police car $u=18.0 \mathrm{~m} / \mathrm{s}$
The distance covered by the police car during the reaction time

$$
s_{1}=18.0 * 0.900=16.2 \mathrm{~m}
$$

The acceleration of the police car $a=4.00 \mathrm{~m} / \mathrm{s}^{2}$
The distance covered by the police car in the remaining time $t-0.900$ is given by the second equation of motion [s $=u^{*} t+1 / 2 a * t^{2}$]

Or $\quad s_{2}=18.0^{*}(\mathrm{t}-0.900)+0.5^{*} 4.00^{*}(\mathrm{t}-0.900)^{2}$
Total distance covered by the police car in t sec will be

$$
\begin{align*}
\mathrm{s}_{1}+\mathrm{s}_{2} & =16.2+18.0 *(\mathrm{t}-0.900)+0.5 * 4.00 *(\mathrm{t}-0.900)^{2} \\
& =18.0 * \mathrm{t}+2 *(\mathrm{t}-0.900)^{2} \tag{2}
\end{align*}
$$

As after time t the police car catches the speeder hence the distance covered will be the same we have

$$
\mathrm{s}_{1}+\mathrm{s}_{2}=\mathrm{s}
$$

Substituting from equations (1) and (2)

$$
18.0 * \mathrm{t}+2 *(\mathrm{t}-0.900)^{2}=41.0 * \mathrm{t}
$$

Gives $t^{2}-1.8 t+0.81=(41-18) t / 2$
Gives $t^{2}-13.3 t+0.81=0$
Or $\quad t=\frac{-(-13.3) \pm \sqrt{(-13.3)^{2}-4 * 1 * 0.81}}{2 * 1}=13.239 \mathrm{~s}$
Hence the total time taken by the police car will be 13.239 s .

