Q- A 7gram bullet moves directly to the right at $1000 \mathrm{~m} / \mathrm{s}$ toward a 5 kg block that is at rest on a horizontal tabletop. The bullet emerges from the block moving to the right at $400 \mathrm{~m} / \mathrm{s}$. determine how far the block will slide if the coefficient of kinetic friction between the block and the table is 0.3 , assuming that no mass of the block is removed as a result of the bullet passing through it.

Let the velocity of the block just after collision is v then as the time taken by the bullet to cross the block is very small, we may apply the law of conservation of momentum and we have

$$
0.007 * 1000=0.007 * 400+5.0 * v
$$

Gives $v=(7-2.8) / 5.0=0.84 \mathrm{~m} / \mathrm{s}$
The acceleration produced by the friction force on the block will be

$$
\mathrm{a}=-\mu \mathrm{mg} / \mathrm{m}=-\mu \mathrm{g}=-0.3^{*} 9.8=-2.94 \mathrm{~m} / \mathrm{s}^{2} .
$$

Hence the distance moves by the block s is given by using the third equation of motion as

$$
\begin{array}{ll}
& v^{2}=u^{2}+2 * a * s \\
\text { Or } \quad 0=0.84^{2}+2 *(-2.94)^{*} s \\
\text { Gives } & s=0.12 \mathrm{~m}=12 \mathrm{~cm} .
\end{array}
$$

