Q- What is the percentage change in momentum of a proton that accelerates from (a) 0.45c to 0.80 c and (b) 0.80 c to 0.98 c .

The relativistic momentum of a particle moving with velocity v is given by

$$
p=\frac{m_{0} v}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
$$

Here m_{0} is the rest mass of the particle and c is speed of light
(a) The momentum of the proton at velocity 0.45 c will be

$$
p_{1}=\frac{m_{0} 0.45 c}{\sqrt{1-0.45^{2}}}=0.504 m_{0} c
$$

And the momentum of the proton at velocity 0.80 c will be

$$
p_{2}=\frac{m_{0} 0.80 c}{\sqrt{1-0.80^{2}}}=1.333 m_{0} c
$$

Thus the percent change is given by

$$
\Delta P \%=\frac{p_{2}-p_{1}}{p_{1}} * 100=\frac{1.333-0.504}{0.504} * 100=164 \%
$$

(b) The momentum of the proton at velocity 0.80 c will be

$$
p_{2}=\frac{m_{0} 0.80 c}{\sqrt{1-0.80^{2}}}=1.333 m_{0} c
$$

And the momentum of the proton at velocity 0.98 c will be

$$
p_{3}=\frac{m_{0} 0.98 c}{\sqrt{1-0.98^{2}}}=4.925 m_{0} c
$$

Thus the percent change is given by

$$
\Delta P \%=\frac{p_{3}-p_{2}}{p_{2}} * 100=\frac{4.925-1.333}{1.333} * 100=269 \%
$$

