Q- A block of mass $m_{1}=4 \mathrm{~kg}$ moves to the right with a speed of $\mathrm{v}_{1}=10 \mathrm{~m} / \mathrm{s}$ toward a second block of mass $m_{2}=5 \mathrm{~kg}$ that moves to the left with a speed $\mathrm{v}_{2}=3 \mathrm{~m} / \mathrm{s}$. after the blocks collide; it is found that the m_{1} remains stationary. Determine the coefficient of restitution between the two blocks.

Let the velocity of the m_{2} after collision is $v_{2}{ }^{\prime}$ then according to law of conservation of linear momentum we have

	$m_{1} \vec{v}_{1}+m_{2} \vec{v}_{2}=m_{1} \vec{v}_{1}^{\prime}+m_{2} \vec{v}^{\prime}{ }_{2}$
Or	$4^{*} 10+5(-3)=4^{*} 0+5^{*} v^{\prime}{ }_{2}$
Gives	$v^{\prime}=5 \mathrm{~m} / \mathrm{s}$

Gives $v_{2}^{\prime}=5 \mathrm{~m} / \mathrm{s}$

Now as the velocity of approach of the blocks is $10-(-3)=13 \mathrm{~m} / \mathrm{s}$ and the velocity of their separation $=5-0=5 \mathrm{~m} / \mathrm{s}$ the coefficient of restitution is given by

$$
e=\frac{v_{\text {sep }}}{v_{\text {app }}}=\frac{5}{13}=0.385
$$

