Q- A uniform string of linear density $10 \mathrm{~g} / \mathrm{m}$ is tied to the ceiling of an elevator. A 5 kg mass is hung from the other end of the string at a point 1 m from the ceiling. If the elevator accelerates upward at 0.10 g what is the fundamental frequency of the string?

With the elevator the hanging mass is also accelerates and hence the tension F in the string is given by using Newton's second law of motion as

Or

$$
\begin{aligned}
& F-m g=m a \\
& F=m(g+a)=m(g+0.10 g)=m g * 1.10=5^{*} 9.8^{*} 1.10=53.9 \mathrm{~N} .
\end{aligned}
$$

The velocity of the transverse waves in the string is given by

$$
c=\sqrt{\frac{F}{\mu}}
$$

Where F is the tension in the string and μ is the mass per unit length hence the wave velocity is

$$
c=\sqrt{\frac{F}{\mu}}=\sqrt{\frac{53.9}{10 * 10^{-3}}}=73.42 \mathrm{~m} / \mathrm{s}
$$

As the length of the string is 1 m and there are two nodes, one at each end of the string thus wavelength will be 2 m (distance between two consecutive nodes is $\lambda / 2$) and hence the natural frequency of the string will be

$$
\mathrm{n}=\mathrm{c} / \lambda=\mathrm{c} / 2 \mathrm{~L}=73.42 / 2=36.71 \mathrm{~Hz}
$$

