(a) Consider the circuit below.

a) Find the equivalent resistance of the combination.

As the two 3Ω resistances are in series their equivalent resistance will be 6Ω and this is connected in parallel to 4Ω this gives the resistance between points P and S equal to

$$
\mathrm{R}_{\mathrm{PS}}=\frac{6 * 4}{6+4}=2.4 \Omega
$$

This 2.4Ω resistance is in series with 2Ω resistance (SR) gives a total of 4.4Ω
This resistance is in series with 1Ω resistance in parallel and hence the equivalent resistance between points P and R will be given by

$$
\mathrm{R}_{\mathrm{PR}}=\frac{1 * 4.4}{1+4.4}=0.8 \Omega
$$

The circuit reduces to three resistances in series and thus the equivalent resistance of the circuit will be

$$
\mathrm{R}_{\mathrm{AB}}=2+0.8+2=4.8 \Omega
$$

b) If a 10 V potential difference (PD) is applied across the points A and B, find the PD across the 4Ω resistor and current in it.

The current in the circuit when a 10 V voltage is applied to $A B$ will be

$$
\mathrm{I}=\mathrm{V} / \mathrm{R}=10 / 4.8=2.08 \mathrm{~A}
$$

Hence the Potential difference across 0.8Ω resistor or between points P and R is given by

$$
V_{P R}=2.08 * 0.8=1.66 \mathrm{~V} .
$$

Hence the current in PSR branch in will be

$$
\mathrm{I}_{1}=1.66 / 4.4=0.38 \mathrm{~A}
$$

Thus the potential different between points P and S will be

$$
V_{P S}=0.38 * 2.4=0.9 \mathrm{~V}
$$

And the current in the 4Ω resistance will be

$$
\mathrm{I}_{2}=0.9 / 4=0.23 \mathrm{~A}
$$

