Q- A $2.00-\mathrm{nF}$ capacitor with an initial charge of $5.10 \mu \mathrm{C}$ is discharged through a $1.30-\mathrm{k} \Omega$ resistor.
(a) Calculate the current in the resistor $9.00 \mu S$ after the resistor is connected across the terminals of the capacitor.

The time constant of the capacitor resistor circuit is given by

$$
\tau=R C=1.30 * 10^{3} * 2.00 * 10^{-9} s=2.6 * 10^{-6} s=2.6 \mu \mathrm{~s} .
$$

The discharge current in the circuit as a function of time is given by

$$
i=\frac{q_{0}}{R C} * e^{-\frac{t}{\tau}}
$$

Hence the current at the given time will be

$$
i=\frac{5.10 \mu C}{2.6 \mu s} * e^{-\frac{9.00 \mu s}{2.6 \mu s}}=1.96 * 0.031=0.06 \mathrm{~A}
$$

(b) What charge remains on the capacitor after $8.00 \mu S$?

The time constant of the capacitor resistor circuit is given by

$$
\tau=R C=1.30 * 10^{3} * 2.00 * 10^{-9} s=2.6 * 10^{-6} s=2.6 \mu \mathrm{~s} .
$$

The charge on the capacitor discharging through a resistance as a function of time is given by

$$
q=q_{0} * e^{-\frac{t}{\tau}}
$$

Hence the charge on the capacitor after $8.00 \mu S$ time

$$
q=5.10 \mu C * e^{-\frac{8.00 \mu s}{2.6 \mu s}}=5.10 \mu C * 0.046=0.235 \mu C
$$

(c) What is the maximum current in the resistor?

The current in the circuit is the maximum at $\mathrm{t}=0$ hence the maximum current will be

$$
i=\frac{q_{0}}{R C} * e^{-\frac{0}{\tau}}=\frac{q_{0}}{R C}=\frac{5.10 \mu C}{2.6 \mu s}=1.96 \mathrm{~A}
$$

