Q- The circuit below shows a circuit designed to measure the internal resistance ' r ' of a battery. Resistor R is 2Ω and $A B$ is the potentiometer wire. With the switch S open a balancing length $I_{1}=55.2 \mathrm{~cm}$. is obtained. When switch S is closed the balancing length $I_{2}=53.2 \mathrm{~cm}$. Calculate the internal resistance ' r ' of the battery.

Let the potential gradient (rate of potential drop per unit length $\mathrm{dV} / \mathrm{dl}$) across the wire $A B$ is ρ Volt/cm.

When the switch S is open the length of the potentiometer wire balances the EMF of the cell (as no current through the cell the cell is in open circuit) and hence we have

$$
\begin{equation*}
E=\rho^{*} I_{1}=55.2 \rho \tag{1}
\end{equation*}
$$

When the switch S is closed there will be a current through the cell and the resistor R and hence the cell is in closed circuit and hence the terminal voltage V is balanced by the potentiometer wire length I_{2} and hence we have

$$
\begin{equation*}
V=\rho^{*} I_{2}=53.2 \rho \tag{2}
\end{equation*}
$$

Dividing the two equations we have

$$
E / V=55.2 / 53.2=1.0376
$$

Now as the internal resistance is given by the relation

$$
r=R\left(\frac{E}{V}-1\right)
$$

Substituting the values we get

$$
r=2\left(\frac{55.2}{53.2}-1\right)=0.0752 \Omega
$$

