Q- In reaching her destination, a backpacker walks with an average velocity of $1.07 \mathrm{~m} / \mathrm{s}$, due west. This average velocity results, because she hikes for 5.36 km with an average velocity of $2.37 \mathrm{~m} / \mathrm{s}$ due west, turns around, and hikes with an average velocity of 0.748 m / s due east. How far east did she walk (in kilometers)?

Time taken in the first hike due west will be

$$
t_{1}=s_{1} / v_{1}=5.36 * 10^{3} / 2.37=2261.6 \mathrm{~s} \quad--(1)
$$

Let the time for second hike be t_{2}
Distance covered in second hike will be given by

$$
\begin{equation*}
\mathrm{s}_{2}=0.748 * \mathrm{t}_{2} \tag{2}
\end{equation*}
$$

Now the total time taken is $\left(t_{1}+t_{2}\right)$
And the total displacement is $\left(s_{1}-s_{2}\right)$
Gives the average velocity for the whole trip as

$$
\begin{array}{r}
v=\left(s_{1}-s_{2}\right) /\left(t_{1}+t_{2}\right) \\
\text { Or } \quad v^{*}\left(t_{1}+t_{2}\right)=\left(s_{1}-s_{2}\right)
\end{array}
$$

Substituting the values from equation 1 and 2 and from the question we have

$$
1.07\left(2261.6+\frac{s_{2}}{0.748}\right)=5360-s_{2}
$$

Or $\quad 2419.9+1.4305 * s_{2}=5360-s_{2}$

Or $\quad 1.4305 * s_{2}+s_{2}=5360-2419.9$
Gives $\mathrm{s}_{2}=1209.7 \mathrm{~m}=1.21 \mathrm{~km}$.

