Q- Particles of masses $m_1 = 3kg$ and $m_2 = 5kg$ move on a collision course with velocities: $u_1 = (7 i + 3 j) m/s$ and $u_2 = (3 i + 7 j) m/s$, respectively. After they collide, their velocities are $v_1 = (a i + b j) m/s$ and $v_2 = (c i + 4 j) m/s$, respectively. If the collision is perfectly elastic, determine all possible values of a, b and c.

As there is no external force acting on the system of the two particles, the momentum of the system will remain conserved.

Conserving momentum in x direction we have

$$m_1 u_{1x} + m_2 v_{2x} = m_1 v_{1x} + m_2 v_{2x}$$

Or 3*7 + 5*3 = 3*a + 5*c Gives 3a + 5c = 36

----- (1)

Similarly conserving momentum along y direction we have

$$m_1 u_{1y} + m_2 u_{2y} = m_1 v_{1y} + m_2 v_{2y}$$

Or 3*3 + 5*7 = 3*b + 5*4
Gives b = 8 ------(2)

And as the collision is perfectly elastic collision we can conserve kinetic energy before and after collision and hence

$$\frac{1}{2}m_1\left(u_{1x}^2+u_{1y}^2\right)+\frac{1}{2}m_2\left(u_{2x}^2+u_{2y}^2\right)=\frac{1}{2}m_1\left(v_{1x}^2+v_{1y}^2\right)+\frac{1}{2}m_2\left(v_{2x}^2+v_{2y}^2\right)$$

Or
$$3(7^2+3^2)+5(3^2+7^2)=3(a^2+b^2)+5(c^2+4^2)$$

Or
$$464 = 3(a^2 + 8^2) + 5(c^2 + 4^2)$$

Or
$$464 = 3a^2 + 192 + 5c^2 + 80$$

Or
$$3a^2 + 5c^2 = 192$$

Gives
$$3a^2 + 5\left(\frac{36-3a}{5}\right)^2 = 192$$
 [substituting the value of c from equation 1]
Or $15a^2 + (36-3a)^2 = 960$
Or $24a^2 - 216a + 336 = 0$
Or $a^2 - 9a + 14 = 0$
Gives $a = 2$ and $a = 7$
And $c = \pm 6$ and $c = \pm 3$

Hence the value sets of a, b and c are (2, 8, \pm 6) and (7, 8, \pm 3)