Q- A uniform circular disc has mass 4 m and radius r . A particle of mass m is attached to the disc at point A of its circumference. The loaded disc is free to rotate about a horizontal axis which is tangential to the disc at the point B, where $A B$ is a diameter. The disc is released from rest with $A B$ at an angle of 60 degree with the upward vertical. Find the magnitude of the force exerted by the disc $0 n$ the axis when $A B$ makes an angle 60 with the downward vertical.

The moment of inertia of a disc about its diameter is

$$
I_{d}=1 / 4 \text { mass }^{*} \text { radius }^{2}
$$

Or $\quad I_{d}=1 / 4 *(4 m) r^{2}=m r^{2}$
Hence the moment of inertia about an axis parallel and passing through the edge (means tangential) is given by the parallel axis theorem as

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{B}}
\end{aligned}=\mathrm{I}_{\mathrm{d}}+\text { mass* distance }^{2} \mathrm{l}
$$

This is the moment of inertia of the disc about B.
As the distance of the particle of mass m from the axis B is $2 r$, its moment of inertia about it will be $m^{*}(2 r)^{2}=4 \mathrm{mr}^{2}$

Thus the moment of inertia of the disc with the particle about axis through B will be

$$
\begin{equation*}
I=5 m r^{2}+4 m r^{2}=9 m r^{2} \tag{1}
\end{equation*}
$$

Now as the diameter of the disc makes an angle of 60° in both positions with vertical hence triangle $B A^{\prime} A$ will be an equilateral triangle and thus $A^{\prime} A$ will be $2 r$ and $C^{\prime} C$ will be r.
As there no non-conservative force acting on the system, according to law of conservation of energy

Loss in Potential energy = gain in kinetic energy
Loss in PE (of the disc + of the particle) $=$ gain in rotational KE of the system
Or $\quad 4 \mathrm{mg} * \mathrm{CC}^{\prime}+\mathrm{mg} * \mathrm{AA}^{\prime}=1 / 2 * \mathrm{I} * \omega^{2}$

Or $\quad 4 m g * r+m g * 2 r=1 / 2 * 9 m r^{2} * \omega^{2}$
Where ω is the angular velocity of the disc in $2^{\text {nd }}$ position $A B$

$$
\begin{equation*}
\text { Gives } \omega^{2}=4 \mathrm{~g} / 3 \mathrm{r} \tag{2}
\end{equation*}
$$

The position of center of mass on the disc and the particle from the axis of rotation $A B$ is given by

$$
\begin{equation*}
\mathrm{r}_{\mathrm{CM}}=\frac{4 m * r+m * 2 r}{4 m+m}=\frac{6 r}{5} \tag{3}
\end{equation*}
$$

The torque acting on the disc in $2^{\text {nd }}$ position is given by (force*perpendicular distance)

$$
\tau=4 \mathrm{mg} * M B+m g^{*} M^{\prime} B=4 \mathrm{mg} * r \sin 60^{\circ}+m g^{*} 2 r \sin 60^{\circ}=3 \sqrt{ } 3^{*} m g r
$$

Hence angular acceleration of the system in position $A B$ will be

$$
\alpha=\frac{\tau}{I}=\frac{3 \sqrt{3} * m g r}{9 m r^{2}}=\frac{g}{\sqrt{3} * r}
$$

And thus the acceleration of center of mass of the system (perpendicular to $A B$) will be given by

$$
\begin{equation*}
a=\alpha * r_{C M}=\frac{g}{\sqrt{3} * r} * \frac{6 r}{5}=\frac{2 \sqrt{3} * g}{5} \tag{4}
\end{equation*}
$$

Now the external forces acting on the system of the disc and particle are

1. the weight of the disc 4 mg
2. the weight of the particle mg and
3. the reaction of the axis N

Resolving the forces in the direction $A B$ and perpendicular to it we have
(A) The force in the direction $A B$

$$
F_{A B}=N_{1}-4 m g \cos 60^{\circ}-m g \cos 60^{\circ}=N_{1}-(5 m g / 2)
$$

This force provides the required centripetal force to move the mass along the circular path and hence

$$
F_{A B}=N_{1}-(5 m g / 2)=5 m * \omega^{2} * r_{C M}
$$

Substituting the values of ω^{2} and r_{CM} from equations 2 and 3 and rearranging we have

$$
\begin{equation*}
N_{1}=\frac{5 m g}{2}+5 m * \frac{4 g}{3 r} * \frac{6 r}{5}=\frac{5 m g}{2}+8 m g=\frac{21 m g}{2} \tag{A}
\end{equation*}
$$

(B) The force in the direction perpendicular to $A B$ will be

$$
F_{P E R}=4 m g \sin 60^{\circ}+m g \sin 60^{\circ}-N_{2}=\frac{5 \sqrt{3}}{2} * m g-N_{2}
$$

This force will provide the acceleration to the mass of the system on the circular path and hence we have

$$
F_{P E R}=\frac{5 \sqrt{3}}{2} * m g-N_{2}=5 m * a
$$

Substituting the value of a from equation 4 and rearranging we have

$$
N_{2}=\frac{5 \sqrt{3}}{2} * m g-5 m * \frac{2 \sqrt{3} * g}{5}=\frac{\sqrt{3} * m g}{2}
$$

Hence the reaction of the axis on the disc is given by

$$
N=\sqrt{N_{1}^{2}+N_{1}^{2}}=\sqrt{\left(\frac{21 m g}{2}\right)^{2}+\left(\frac{\sqrt{3} m g}{2}\right)^{2}}=\sqrt{\frac{441}{4}+\frac{3}{4}} m g=\sqrt{111} * m g
$$

As according to Newton's third law of motion every force have equal and opposite reaction, the force exerted by the disk will also have a magnitude equal to

$$
F=m g \sqrt{ }(111)
$$

