Q- A piston in a gasoline engine is in simple harmonic motion. Taking the extremes of its position, relative to its center point as plus or minus 5.00 cm , find the maximum velocity and acceleration of the piston, when the engine is running at the rate of $3600 \mathrm{rev} / \mathrm{min}$.

The amplitude of oscillation is $\mathrm{A}=5.00 \mathrm{~cm}=5.00 * 10^{-2} \mathrm{~m}$
The angular frequency is given by

$$
\omega=n \frac{\text { rev }}{\min }=2 \pi n \frac{\text { radiuns }}{\min }=2 \pi * 3600 \frac{\text { radiuns }}{\mathrm{min}}=\frac{2 \pi * 3600}{60} \frac{\text { radiuns }}{\mathrm{sec}}=377 \mathrm{rad} / \mathrm{s}
$$

Hence the maximum velocity of the object making SHM will be

$$
v_{\max }=A * \omega=5.00 * 10^{-2} * 377=18.85 \mathrm{~m} / \mathrm{s}
$$

and the magnitude of maximum acceleration is given by

$$
a_{\max }=A * \omega^{2}=5.00 * 10^{-2} * 377^{2}=7106.45 \mathrm{~m} / \mathrm{s}^{2}=7.1 \mathrm{~km} / \mathrm{s}^{2}
$$

