Q- A baseball is hit into the air at an initial speed of $30 \mathrm{~m} / \mathrm{s}$ and an angle of 60° above the horizontal. At the same time, the center fielder starts running towards the batter and catches the ball 1 m above the level at which it was hit. If the center fielder is initially 1.25 $\times 10^{2} \mathrm{~m}$ from home plate, what must be his average speed?

Let the time of the flight be t .
Horizontal velocity (constant) of the ball

$$
v_{x}=30 * \cos \left(60^{\circ}\right)=30 * 0.50=15 \mathrm{~m} / \mathrm{s}
$$

Initial vertical velocity of the ball

$$
v_{y}=30 * \sin \left(60^{\circ}\right)=30 * 0.866=26 \mathrm{~m} / \mathrm{s}
$$

Vertical displacement is given by the second equation of motion as

$$
\left[s=u * t+1 / 2 a * t^{2}\right]
$$

$$
1=26 * t+0.5^{*}(-9.8)^{*} t^{2}
$$

Or $\quad 4.9 * t^{2}-26 * t+1=0$

Gives $t=\frac{26 \pm \sqrt{26^{2}-4 * 4.9 * 1}}{2.4 .9}=\mathrm{t}=\frac{26.38 \pm \sqrt{(26.38)^{2}-4 * 4.9 * 0.958}}{2 * 4.9}$
Or $\quad t=\frac{26 \pm 25.6}{9.8} \mathrm{t}=\frac{26.38 \pm 26.02}{9.8}$
Gives $t=5.267 \mathrm{~s}$ or 0.04 s
Clearly the time of flight is the one for which the ball coming down and is 5.267 s
Hence the horizontal distance covered by the ball in this time will be

$$
x=v_{x} * t=15 * 5.267=79 \mathrm{~m}
$$

Thus the distance to be covered by the fielder will be $d=125-79=46 \mathrm{~m}$
Hence the minimum speed of the catcher should be

$$
v=d / t=46 / 5.267=\mathbf{8 . 7 3} \mathbf{~ m} / \mathrm{s} .
$$

