Q- A pulley wheel of radius r and mass m is free to rotate about a fixed smooth horizontal axis through its centre perpendicular to the plane of the pulley? A light inextensible string passes over the pulley and carries particles of mass 4 m and 2 m , one at each end of the string. It can be assumed that the pulley wheel can be modeled as a uniform circular disc and that the string does not slip on the pulley. Find the tension in each vertical part of the string.

The friction between the pulley and the string will create a torque on the pulley and it will have an angular acceleration say α.

This friction on the string will change the tension in it hence the tension on both sides of the pulley will be different say T_{1} and T_{2}.

As the angular acceleration in the pulley is α and the string is inextensible the acceleration in the two masses will be $a=\alpha^{*} r$ downward for $4 m$ and upward for mass 2 m .

Now the forces acting on 4 m mass are its weight 4 m (downward) and the tension in the string T_{1} (upward) hence writing equation of motion [$F=m a$] for mass $4 m$ with downward positive we have

$$
\begin{equation*}
4 \mathrm{mg}-\mathrm{T}_{1}=4 \mathrm{ma} \tag{1}
\end{equation*}
$$

And for mass 2 m with upward positive

$$
\begin{equation*}
\mathrm{T}_{2}-2 \mathrm{mg}=2 \mathrm{ma} \tag{2}
\end{equation*}
$$

Now torque on the pulley is given in anticlockwise direction by

$$
\tau=\mathrm{T}_{1} \mathrm{r}-\mathrm{T}_{2} \mathrm{r}
$$

Writing equation of rotational motion for the pulley we have

$$
\tau=I^{*} \alpha
$$

Or $\quad\left(T_{1}-T_{2}\right) * r=I^{*} \alpha$
Here I is the moment of inertia of the pulley (disk) given by $1 / 2 \mathrm{mr}^{2}$. Substituting the value in equation above we have

$$
\begin{align*}
& \left(T_{1}-T_{2}\right) * r=1 / 2 \mathrm{mr}^{2} *_{\alpha} \\
\text { Or } & \mathrm{T}_{1}-\mathrm{T}_{2}=1 / 2 \mathrm{~m} \mathrm{r}^{*} \alpha \\
\text { Or } & \mathrm{T}_{1}-\mathrm{T}_{2}=1 / 2 \mathrm{ma} \quad\left[\text { as } \mathrm{a}=\mathrm{r}^{*} \alpha\right] \tag{3}
\end{align*}
$$

Adding all three equations 1, 2 and 3 we have

Or $\quad 2 \mathrm{mg}=(13 / 2) \mathrm{ma}$
Gives $\mathrm{ma}=4 \mathrm{mg} / 13$.

Substituting this value in equation 1 we get
$4 \mathrm{mg}-\mathrm{T}_{1}=4(4 \mathrm{mg} / 13)$
Gives $T_{1}=36 \mathrm{mg} / 13$
And substituting in equation 2 we get
$\mathrm{T}_{2}-2 \mathrm{mg}=2^{*}(4 \mathrm{mg} / 13)$
Or $\quad \mathrm{T}_{2}=2 \mathrm{mg}+2(4 \mathrm{mg} / 13)=34 \mathrm{mg} / 13$
Hence the tensions in the strings will be
$\mathrm{T}_{1}=\mathbf{3 6 m g} / 13$
And $\quad T_{2}=\mathbf{3 4 m g} / \mathbf{1 3}$

