Q- A sinusoidal voltage $v(t)=(40.0 \mathrm{~V}) \sin (100 \mathrm{t})$ is applied to a series RLC circuit with $\mathrm{L}=$ $160 \mathrm{mH}, \mathrm{C}=0.9 \mu \mathrm{~F}$, and $\mathrm{R}=68 \mathrm{Ohm}$
a) What is the impedance of the circuit?

As indicated by the equation $\mathrm{V}_{\max }=40.0 \mathrm{~V}$ and $\omega=100$ radians $/ \mathrm{sec}$.
Hence the inductive reactance of the circuit will be

$$
X_{L}=L \omega=160 * 10^{-3} * 100=16 \Omega
$$

And the capacitive reactance will be

$$
X C=1 /(C \omega)=1 /\left(0.9 * 10^{-6} * 100\right)=1.11 * 10^{4} \Omega
$$

Now the impedance of the circuit is given by

$$
\begin{aligned}
Z & =\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}} \\
\text { Or } \quad Z & =\sqrt{68^{2}+\left(16-1.11 * 10^{4}\right)^{2}}=11084.21 \Omega
\end{aligned}
$$

(b) What is the maximum current?

The peak value of voltage (maximum) is 40 V and hence maximum current in the circuit is given by

$$
\begin{aligned}
I_{\max }= & V_{\max } / Z \\
& =40.0 / 11084.21=3.61 * 10^{-3} \mathrm{~A}
\end{aligned}
$$

(c) Determine Phase angle in the equation $i(t)=I_{\max } \sin (\omega t-P h a s e ~ a n g l e)$ and the average power in the circuit.

The maximum current is already calculated and equal to 3.61 mA
The phase angle is given by

$$
\tan \phi=\frac{\left(X_{L}-X_{C}\right)}{R}=\frac{-11084}{68}=-163
$$

Gives $\phi=-89.65^{\circ}$

The average power in the LCR circuit is given by

$$
\langle P\rangle=\frac{i_{\max }^{2} R}{2}=\frac{\left(3.61 * 10^{-3}\right)^{2} * 68}{2}=4.43 * 10^{-4} \mathrm{~W}
$$

