Q- Two resistors connected in series have an equivalent resistance of 690Ω. When they are connected in parallel, their equivalent resistance is 150Ω. Find the resistance of each resistor.

Let the resistances are R_{1} and R_{2}.
When the resistances are connected in series, their equivalent resistance is equal to the sum of the individual resistances and hence

$$
\begin{equation*}
R s=R_{1}+R_{2}=690 \Omega . \tag{1}
\end{equation*}
$$

When the resistances are connected in parallel, inverse of their equivalent resistance is equal to the sum of inverse of their individual resistances and hence

$$
\begin{align*}
& \quad \frac{1}{R_{P}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}=\frac{1}{150} \\
& \text { Or } \quad \frac{R_{1} R_{2}}{R_{1}+R_{2}}=150 \tag{2}
\end{align*}
$$

Substituting from equation 1 we have

$$
R_{1} R_{2}=150 * 690=103500
$$

Substituting value of R2 from equation 1 again we have

$$
R_{1}\left(690-R_{1}\right)=103500
$$

Gives $R_{1}^{2}-690 R_{1}+103500=0$
Or $\quad R_{1}=\frac{690 \pm \sqrt{690^{2}-4 * 1 * 103500}}{2}=469.6 \Omega$ or 220.4Ω
Hence R_{1} and R_{2} are $\mathbf{4 6 9 . 6 \Omega}$ and $\mathbf{2 2 0 . 4 \Omega}$ respectively.

