Q- A 24-hour military clock has hour markings from 0 to 23 . If the hands on this clock coincide at 00:00:00 (hours:minutes:seconds), determine the time when the hour and minute hands coincide again.

The hour hand will make one complete rotation in 24 hours $=86400 \mathrm{sec}$. hence its angular velocity will be

$$
\omega_{H}=\frac{2 \pi}{86400} \mathrm{rad} / \mathrm{sec} .
$$

And the minute hand makes one complete rotation in one hour hence it angular velocity will be

$$
\omega_{M}=\frac{2 \pi}{3600} \mathrm{rad} / \mathrm{sec} .
$$

Now let both the hands coincides when hour hand rotates by an angle θ then the minute hand will rotate by an angle $2 \pi+\theta$ (one extra rotation) at time t.

Then this time t will be given by
For hour hand $\quad \frac{2 \pi}{86400} * \mathrm{t}=\theta$
And for minute hand $\frac{2 \pi}{3600} * t=2 \pi+\theta$
Subtracting the equations we get

$$
\left(\frac{2 \pi}{3600}-\frac{2 \pi}{86400}\right) * t=2 \pi
$$

Or $\quad t=\frac{3600 * 86400}{86400-3600}=3756.52 \mathrm{sec}$
Hence the time in s will be $t=3600+2 * 60+36.5$
And thus the time will be $\quad t=01: 02: 36.5 A M$

