Q- In the simple AC Circuit $R=70.0$ Ohm and $V=V_{\text {max }} \sin \omega t$
a) If $V_{t}=0.250 V_{\max }$ for the first time at $t=0.0100 \mathrm{~s}$, what is the angular frequency of the source?
b) What is the next value of t for which $V_{t}=0.250 V_{\text {max }}$?
a) The voltage across the resistance is given by

$$
V=V_{\max } \sin \omega t
$$

Here the voltage is changing as a sine function of time and at time $t=0.0100 \mathrm{~s}$ the voltage is $0.250 \mathrm{~V}_{\text {max }}$ hence substituting the values in the equation above equation we have

$$
0.250 \mathrm{~V}_{\max }=\mathrm{V}_{\max } \sin (\omega * 0.0100)
$$

Or $\quad \sin \left(\omega^{*} 0.0100\right)=0.250$
Or $\quad \omega^{*} 0.0100=\sin ^{-1}(0.250)=14.48^{0} * \frac{\pi}{180^{0}}=0.2527$ radians
Gives $\omega=25.27$ radians/sec.
Hence the angular frequency of the source is 25.27 radians $/$ sec
b) What is the next value of t for which $V_{t}=0.250 V_{\text {max }}$?

The angle ωt is called phase angle and the value of $\sin \theta$ is same as that of $\sin (\pi-\theta)$, the value of $\sin \omega t$ will be repeated again at time t^{\prime} when the value of ωt^{\prime} will be $(\pi-\omega t)$

Or $\quad \omega \mathrm{t}^{\prime}=\pi-\omega \mathrm{t}$
Or $\quad \mathrm{t}^{\prime}=(\pi / \omega)-\mathrm{t}=0.1243-0.0100=0.1143 \mathrm{~s}$

