Q- Calculate the force required to pull a copper ball of radius 2.00 cm upward through a fluid at the constant speed $9.00 \mathrm{~cm} / \mathrm{s}$. Take the drag force to be proportional to the speed, with proportionality constant $0.950 \mathrm{~kg} / \mathrm{s}$. Ignore the buoyant force.

The drag force is proportional to the speed and hence given by

$$
F=k^{*} v \quad \text { [here } k \text { is constant of proportionality] }
$$

At a speed of $9.00 \mathrm{~cm} / \mathrm{s}=0.09 \mathrm{~m} / \mathrm{s}$ the drag force will be

$$
F=0.950 * 0.09=0.0855 \mathrm{~N}
$$

Let the external force with which the ball is pulled up is $\mathrm{F}_{\text {ext }}$ then the forces acting on the ball are

(1) The external force $F_{\text {ext }}$ upward
(2) The weight mg of the ball downward and
(3) the drag force F downward.

The mass of the ball is given by the product of its volume and the density hence

$$
m=\frac{4}{3} \pi R^{3} * \rho=\frac{4}{3} * 3.1416 *\left(2.0 * 10^{-2} m\right)^{3} * 8.96 * 10^{3} \mathrm{kgm}^{-3}=0.300 \mathrm{~kg}
$$

$\left[(4 \pi / 3) R^{3}\right.$ is the volume of sphere and the density of copper can be found in the tables given in the books or search table on www.widipedia.org]

Hence the weight of the ball $\mathrm{mg}=0.300 * 9.8=2.94 \mathrm{~N}$
Now under these three forces the ball is moving with constant velocity means that the forces are balanced and hence

Or

$$
F_{\text {ext }}-m g-F=0
$$

$$
F_{\text {ext }}=m g+F=2.94+.0855=3.0255 \mathrm{~N} \text { upward. }
$$

