Q- A solid cube of silver (density $=10.5 \mathrm{~g} / \mathrm{cm}^{3}$) has a mass of 90.0 g .
(a) What is the resistance between opposite faces of the cube?

Volume of the cube will be $=$ mass $/$ density $=90.0 / 10.5=8.57 \mathrm{~cm}^{3}$.
Hence side of the cube $L=(8.57)^{\frac{1}{3}}=2.05 \mathrm{~cm}=0.0205 \mathrm{~m}$
Resistance of a conductor is given by

$$
\mathrm{R}=\frac{\rho L}{A}
$$

Where ρ is the resistivity, L is the length and A is area of cross section. The resistivity of silver is $1.62 * 10^{-8} \Omega \mathrm{~m}$ hence

$$
\mathrm{R}=\frac{\rho L}{A}=\frac{\rho L}{L^{2}}=\frac{\rho}{L}=\frac{1.62 * 10^{-8}}{0.0205}=7.90 * 10^{-7} \Omega
$$

(b) Assume each silver atom contributes one conduction electron. Find the average drift speed of electrons when a. potential difference of $1.00 * 10^{-5} \mathrm{~V}$ is applied to opposite faces. The atomic number of silver is 47 , and its molar mass is $107.87 \mathrm{~g} / \mathrm{mol}$.

With this applied voltage the current in the cube is given by

$$
\mathrm{I}=\mathrm{V} / \mathrm{R}=1 * 10^{-5} /\left(7.90^{*} 10^{-7}\right)=12.658 \mathrm{~A}
$$

And the current density

$$
\begin{equation*}
j=I / A=I / L^{2}=12.658 /(0.0205)^{2}=30120 \mathrm{~A} / \mathrm{m}^{2} \tag{1}
\end{equation*}
$$

Now the molar mass of silver is 107.87 gram $/ \mathrm{mol}$
Hence the number of moles in 10.5 gm i.e. $1 \mathrm{~cm}^{3}$ will be

$$
=10.5 / 107.87=9.734 * 10^{-2} \mathrm{~mole} / \mathrm{cm}^{3}
$$

Hence number of moles per m^{3} will be $=9.734 * 10^{4} \mathrm{~mole} / \mathrm{m}^{3}$
And hence the number of atoms or conduction electrons per cubic meter will be

$$
n=9.734 * 10^{4} * 6.023 * 10^{23}=5.863 * 10^{28}
$$

Now the drift velocity is given by

$$
\mathrm{vd}=\mathrm{j} /\left(\mathrm{n}^{*} \mathrm{e}\right)
$$

Where n is the number of charge carriers per unit volume
Hence substituting the values we have

$$
v_{d}=\frac{30120}{5.863 * 10^{28} * 1.6 * 10^{-19}}=3.21 * 10^{-6} \mathrm{~m} / \mathrm{s}
$$

