Q- (a) Calculate the force required in the deltoid muscle (F_{m}) to hold up the outstretched arm as shown in the figure. The mass of the arm is 2.8 kg .
(b) What is the muscle force and the reaction Fj at joint if the hand holds a ball of mass

5 kg at a distance 50 cm from the shoulder joint?
(a) The rotational effect of a force is called torque or moment of the force and is given
by $\vec{\tau}=\vec{r} \times \vec{F}$
Here r the radius vector to the point of application of the force and the magnitude will be

$$
\tau=r^{*} F * \sin \theta
$$

Considering the shoulder joint as the point of rotation and taking moment of the forces about this point we have

Torque due to weight w will be

$$
\tau_{1}=-r_{1} * W * \sin 90^{\circ}=-0.24 *(2.8 * 9.8) * 1.0=-6.586 \mathrm{Nm}
$$

The negative sign is due to the torque is clockwise.
Similarly torque due to the force in deltoid muscle F_{m} will be

$$
\tau_{2}=r_{2} * F_{m} * \sin 15^{0}=0.12 * F_{m} * 0.259=0.031 F_{m} \text { Nm. (anticlockwise) }
$$

As the arm is in equilibrium, the net torque acting on it must be zero hence we have

$$
\tau_{1}+\tau_{2}=0
$$

Gives $-6.586+0.031 F_{m}=0$
Or $\quad F_{m}=6.586 / 0.031=212.45 \mathbf{N}$
(b) In case when there is a ball in the arm, there will be a third torque will act due to the weight of the ball and this will be given by

$$
\tau_{3}=-r_{3} * m g * \sin 90^{\circ}=-0.50 *(5.0 * 9.8) * 1.0=-24.5 \mathrm{Nm}
$$

This extra torque will be balanced by the increase in the force in the deltoid muscle let it is now F^{\prime} then again for equilibrium we have

$$
\tau_{1}+\tau_{2}^{\prime}+\tau_{3}=0
$$

Or $\quad-6.586+0.031 F_{m}^{\prime}-24.5=0$
Gives $F_{m}^{\prime}=1005.96 \mathrm{~N}$.

The force Fj on the shoulder joint is balancing the component of the F'm in the horizontal direction and hence

$$
\mathrm{Fj}=\mathrm{F}^{\prime} \mathrm{m} \cos 15^{\circ}=1005.96 * 0.966=971.76 \mathbf{N}
$$

