Q- A 25 turn circular coil of wire has a diameter of 1.0 m . It is placed with its axis (a line through the centre of the coil at right angles to its plane) along the direction of the Earth's magnetic field of $50 \mu \mathrm{~T}$. The coil is then flipped in a time of 0.2 s through an angle of 180°. Calculate the magnitude of the emf generated in the coil.

The area of the coil $\quad A=\pi R^{2}$
Initially the field is parallel to the axis of the coil or parallel to the area vector, hence the magnetic flux through the area A will be given by

$$
\phi_{B}=\vec{B} \bullet \vec{A}=B * A * \cos \theta
$$

Or $\quad \phi_{B}=B^{*} \pi R^{2} * \cos 0^{0}=B^{*} \pi R^{2}$
As the number of turns in the coil is $\mathrm{n}=25$, the flux through the
 coil will be given by

$$
\phi_{1}=n * B * \pi R^{2}
$$

When the coil is flipped by 180°, now the flux through it is negative (crossing in opposite direction) given as

$$
\phi_{2}=n * B * \pi R^{2} * \cos 180^{\circ}=-n * B * \pi R^{2}
$$

Hence during the flipping, the change in magnetic flux through the coil will be

$$
\phi_{2}-\phi_{1}=-n * B * \pi R^{2}-n * B * \pi R^{2}=-2 n * B * \pi R^{2}
$$

As this change occurs in $\Delta \mathrm{t}=0.2 \mathrm{~s}$, according to Faraday's laws of electromagnetic induction the induced EMF is given by

$$
\mathrm{e}=-\frac{\Delta \phi_{B}}{\Delta t}=\frac{2 n B \pi R^{2}}{\Delta t}
$$

Substituting the values we have

$$
\mathrm{e}=\frac{2 n B \pi R^{2}}{\Delta t}=\frac{2 * 25 * 50 * 10^{-6} * \pi^{*}(0.5)^{2}}{0.2}=9.82 * 10^{-3} V
$$

Or induced EMF in the coil will be $\mathbf{9 . 8 2} \mathbf{~ m V}$.

