Q- Positively and negatively charged particles are simultaneously "shot" with velocity v through the magnetic field B as in figure in the plane of the paper. Find the magnitude and direction of the force acting on each particle.

The force acting on an electric charge moving in a magnetic field is called Laurent's force and is given by

$$
\vec{F}=q(\vec{v} \times \vec{B})
$$

Considering x and y directions as in figure and the z direction out of the page (right handed system), the velocity and the magnetic field can be written in the components form as

a) For the positive charge

$$
\vec{v}=v \cos \alpha \cdot \hat{i}-v \sin \alpha . \hat{j}
$$

As the x component of velocity is in positive x direction and y component is in negative y
 direction.

And $\quad \vec{B}=B . \hat{j}$
Where \hat{i}, \hat{j} and \hat{k} are unit vectors in x, y and z directions respectively.
Writing the force as the vector product we have

$$
\vec{F}_{+}=q(\vec{v} \times \vec{B})=q[v(\cos \alpha . \hat{i}-\sin \alpha . \hat{j}) \times B . \hat{j}]
$$

Or $\quad \vec{F}_{+}=q v B[(\cos \alpha \cdot \hat{i}-\sin \alpha \cdot \hat{j}) \times \cdot \hat{j}]$
Or $\quad \vec{F}_{+}=q \nu B[\cos \alpha \cdot(\hat{i} \times . \hat{j})-\sin \alpha \cdot(\hat{j} \times . \hat{j})]$
Or $\quad \vec{F}_{+}=q v B[\cos \alpha \cdot \hat{k}-\sin \alpha . \overrightarrow{0}] \quad[$ as $\hat{i} \times \hat{j}=\hat{k}$ and $\hat{j} \times \hat{j}=0$]
Or $\quad \vec{F}_{+}=q v B \cos \alpha \cdot \hat{k}$
Hence the force on the +q charge is in positive z direction or out of the paper.

b) For the negative charge

$$
\vec{v}=-v \cos \alpha \cdot \hat{i}-v \sin \alpha \cdot \hat{j}
$$

As the x component of velocity is in negative x direction and y component is also in negative y direction.

And

$$
\vec{B}=B . \hat{j}
$$

Writing the force for -q charge we have

$$
\begin{array}{lll}
& \vec{F}_{-}=-q(\vec{v} \times \vec{B})=-q[v(-\cos \alpha \cdot \hat{i}-\sin \alpha \cdot \hat{j}) \times B \cdot \hat{j}] \\
\text { Or } & \vec{F}_{-}=q v B[(\cos \alpha \cdot \hat{i}+\sin \alpha \cdot \hat{j}) \times \cdot \hat{j}] \\
\text { Or } & \vec{F}_{+}=q v B[\cos \alpha \cdot(\hat{i} \times \cdot \hat{j})+\sin \alpha \cdot(\hat{j} \times \cdot \hat{j})] \\
\text { Or } & \vec{F}_{+}=q v B[\cos \alpha \cdot \hat{k}+\sin \alpha \cdot \overrightarrow{0}] \quad \text { [as } \hat{i} \times \hat{j}=\hat{k} \text { and } \hat{j} \times \hat{j}=0 \text {] } \\
\text { Or } & \vec{F}_{+}=q v B \cos \alpha \cdot \hat{k}
\end{array}
$$

Hence the force on the - q charge is also in positive z direction or out of the paper.

