Q- Consider the rectangle below BCDE of length 24 cm . and width 18 cm . Position A is at the centre of the rectangle. Point charges $q_{1}=(+) 0.2 \mu \mathrm{C}, \mathrm{q}_{2}=(+) 0.8 \mu \mathrm{C}$ and $\mathrm{q}_{3}=(-) 0.6 \mu \mathrm{C}$ are placed at the corners B, C and D of the rectangle as shown. Find the magnitude and direction of the electric field at position A.

The strength of electric field (also called field strength of electric field) at a point is measured by the force experience per unit test charge at that point.

The field strength at a point due to a point charge Q is given by using Coulomb's law as

$$
\vec{E}=\frac{Q}{4 \pi \in_{0} r^{2}} \hat{r}
$$

Where r is the distance of the point from the point charge and \hat{r} is the unit vector in the direction of line joining from Q to the point. Multiplying r in numerator and denominator we can write this as

$$
\vec{E}=\frac{Q}{4 \pi \in_{0} r^{3}} * \vec{r}
$$

Now the diagonal of the rectangle is

$$
C E=\sqrt{C B^{2}+B E^{2}}=\sqrt{18^{2}+24^{2}}=30 \mathrm{~cm}
$$

Hence $r=C A+B A+D A=15 \mathrm{~cm}=0.15 \mathrm{~m}$.

The components of this displacement r along x and y from all the three charges are 0.12 cm and 0.09 cm and hence for the three charges r is having components equal in magnitudes but differs in directions.
[\hat{i} and \hat{j} are unit vectors in x and y directions respectively]
Thus electric field at A due to charge q_{1} at B is given by

$$
\vec{E}_{1}=\frac{q_{1}}{4 \pi \in_{0} r^{3}}(x \hat{i}+y \hat{j})=\frac{9 * 10^{9} *\left(+0.2 * 10^{-6}\right)}{0.15^{3}}(0.12 \hat{i}+0.09 \hat{j})
$$

Or $\quad \vec{E}_{1}=5.33 * 10^{5} *(0.12 \hat{i}+0.09 \hat{j})=0.64 * 10^{5} \hat{i}+0.48 * 10^{5} \hat{j}$
Similarly the electric field at A due to charge q_{2} at C is given by

$$
\vec{E}_{2}=\frac{q_{2}}{4 \pi \in_{0} r^{3}}(x \hat{i}-y \hat{j})=\frac{9 * 10^{9} *\left(+0.8 * 10^{-6}\right)}{0.15^{3}}(0.12 \hat{i}-0.09 \hat{j})
$$

Or

$$
\vec{E}_{2}=2.13 * 10^{6} *(0.12 \hat{i}-0.09 \hat{j})=2.56 * 10^{5} \hat{i}-1.92 * 10^{5} \hat{j}
$$

And the electric field at A due to charge q_{3} at D is given by

$$
\vec{E}_{3}=\frac{q_{3}}{4 \pi \in_{0} r^{3}}(x \hat{i}+y \hat{j})=\frac{9 * 10^{9} *\left(-0.6 * 10^{-6}\right)}{0.15^{3}}(-0.12 \hat{i}-0.09 \hat{j})
$$

Or

$$
\vec{E}_{3}=-1.6 * 10^{6} *(-0.12 \hat{i}-0.09 \hat{j})=1.92 * 10^{5} \hat{i}+1.44 * 10^{5} \hat{j}
$$

Now according to superposition law the resultant field at a point due to number of point charges is the vector sum of the fields due to individual charges and hence the field at A due to all three charges is given by

$$
\vec{E}=\vec{E}_{1}+\vec{E}_{2}+\vec{E}_{3}
$$

Or
$\vec{E}=\left(0.64 * 10^{5} \hat{i}+0.48 * 10^{5} \hat{j}\right)+\left(2.56 * 10^{5} \hat{i}-1.92 * 10^{5} \hat{j}\right)+\left(1.92 * 10^{5} \hat{i}+1.44 * 10^{5} \hat{j}\right)$
Or $\quad \vec{E}=[(0.64 \hat{i}+0.48 \hat{j})+(2.56 \hat{i}-1.92 \hat{j})+(1.92 \hat{i}+1.44 \hat{j})] * 10^{5}$
Or $\quad \vec{E}=(5.12 \hat{i}+0.0 \hat{j}) * 10^{5}$
This shows that the y component is zero and hence the field is in x direction or along the length of the rectangle. Its magnitude is $5.12 * 10^{5} \mathrm{~N} / \mathrm{C}$.

Alternative method

As q_{1} and q_{3} are on the opposite side of A and of the opposite sign, the fields due to both will be added up and along AD with magnitude

$$
E_{1,3}=\frac{q_{1}}{4 \pi \epsilon_{0} r^{2}}+\frac{q_{3}}{4 \pi \epsilon_{0} r^{2}}=\frac{9 * 10^{9}}{0.15^{2}}(0.2+0.6) * 10^{-6}=3.20 * 10^{5} \mathrm{~N} / \mathrm{C} .
$$

And field due to q 2 will be along AE and its magnitude will be

$$
E_{2}=\frac{q_{2}}{4 \pi \epsilon_{0} r^{2}}=\frac{9 * 10^{9}}{0.15^{2}} * 0.8 * 10^{-6}=3.20 * 10^{5} \mathrm{~N} / \mathrm{C}
$$

Both fields are equal in magnitude and symmetric to x direction the y component of the resultant will be zero hence the resultant will be along x direction.
In the right angled triangle DBE

$$
\tan \angle D B E=\frac{18}{24}=0.75, \quad \angle D B E=36.87^{\circ}
$$

Hence angle between the two fields will be $\angle D A E=2 * 36.87^{\circ}=73.74^{0}$
Thus the magnitude of the resultant field at A will be

Or

$$
E=\sqrt{E_{1,3}^{2}+E_{2}^{2}+2 * E_{1,3} E_{2} \cos 73.74^{0}}
$$

Or $\quad E=\sqrt{\left(3.20 * 10^{5}\right)^{2}+\left(3.20 * 10^{5}\right)^{2}+2 *\left(3.20 * 10^{5}\right)^{2} \cos 73.74^{0}}$
Or $E=5.12 * 10^{5} \mathrm{~N} / \mathrm{C}$.

