Q- The G string on an instrument is 49 cm long. When played without fingering, it vibrates at a frequency of 196 Hz . The next higher notes on the C-major scale are A (220 Hz), B (247 Hz), C (262 Hz), and D (294 Hz). What distance x from the end of the string must a finger be placed to play each of these notes?

The frequency of the stretched string is given by

$$
n=\frac{1}{2 L} \sqrt{\frac{T}{\mu}}
$$

Here L is the vibrating length of the string, T the tension in the string and μ is its mass per unit length.

For the whole length

$$
196=\frac{1}{2 * 0.49} \sqrt{\frac{T}{\mu}}
$$

Gives $\sqrt{\frac{T}{\mu}}=196 * 2 * 0.49=192.08 \mathrm{~m} / \mathrm{s}$
Let the distance vibrating length be x then
A. $\quad 220=\frac{1}{2 x_{A}} * 192.08$

Gives $x_{A}=\frac{192.08}{220 * 2}=0.4365 m=43.65 \mathrm{~cm}$
$x_{A}=43.65 \mathrm{~cm}$
B. $247=\frac{1}{2 x_{B}} * 192.08$

Gives $x_{B}=\frac{192.08}{247 * 2}=0.3888 m=38.88 \mathrm{~cm}$
$x_{B}=\mathbf{3 8 . 8 8} \mathbf{~ c m}$
C. $\quad 262=\frac{1}{2 x_{C}} * 192.08$

Gives $x_{C}=\frac{192.08}{262 * 2}=0.3665 \mathrm{~m}=36.65 \mathrm{~cm}$
$x_{c}=36.65 \mathrm{~cm}$
D. $\quad 294=\frac{1}{2 x_{D}} * 192.08$

Gives $x_{D}=\frac{192.08}{294 * 2}=0.3267=32.67 \mathrm{~cm}$
$x_{D}=32.67 \mathrm{~cm}$

