Q- A series combination of $R=1000 \Omega, L=500 \mathrm{mH}$ and $\mathrm{C}=150 \mu \mathrm{~F}$ is connected to a sinusoidal voltage supply of frequency 50 Hz . The circuit has peak amplitude of 1 A . Calculate the voltage amplitude of the supply generator

The current in an AC circuit is opposed by resistance and reactance both.
The voltage is ahead of current by a phase difference of 90° and in inductor and lagging behind by 90° in a capacitor. Hence the total reactance in the circuit is considered as the difference of the two reactance and is given by

$$
X=X_{L}-X_{C}=2 \pi f L-\frac{1}{2 \pi f C}
$$

Now as the total voltage across the resistance and the reactance is having a phase difference equal to 90°, the resultant oppose of the circuit is called impedance Z of the circuit and is given by

$$
Z=\sqrt{R^{2}+X^{2}}=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}=\sqrt{R^{2}+\left(2 \pi f L-\frac{1}{2 \pi f C}\right)^{2}}
$$

Hence the voltage amplitude across the whole circuit or of the supply generator is given by

$$
V=I * Z
$$

Or

$$
\begin{aligned}
& V=I * Z=I * \sqrt{R^{2}+\left(2 \pi f L-\frac{1}{2 \pi f C}\right)^{2}} \\
& V=1 * \sqrt{1000^{2}+\left(2 \pi * 50 * 500 * 10^{-3}-\frac{1}{2 \pi * 50 * 150 * 10^{-6}}\right)^{2}} \\
& V=\sqrt{1000^{2}+(157.1-21.2)^{2}}=\sqrt{1000^{2}+135.9^{2}}=1009.2 \mathrm{~V}
\end{aligned}
$$

Or

Or

