Q- Three point charges are aligned along the x axis as shown in Figure. Find the electric field at
(a) The position $(2.00,0)$
(b) The position (0, 2.00).

The electric field due to a point charge at a point distance r is given by

$$
\vec{E}=\frac{q}{4 \pi \in_{0} r^{2}} \hat{r}
$$

Here \hat{r} is the unit vector in the direction of the line joining the charge to the point.

The field strength at a point due to number of point charges is given by the
 superposition law means is resultant of the field strengths due to individual charges.

The distances of point $P(2.00,0)$ from the three charges are $2.00+0.5 \mathrm{~m}, 2.00 \mathrm{~m}$ and 2.00-0.800 m respectively hence the fields are

$$
\vec{E}_{1}=\frac{9 * 10^{9}\left(-4.00 * 10^{-9}\right)}{(2.500)^{2}} \hat{i}=-5.76 \hat{i} \mathrm{~N} / \mathrm{C}
$$

Where \hat{i} is the unit vector in the positive x direction. The negative sign shows that the field is attractive. Similarly

$$
\vec{E}_{2}=\frac{9 * 10^{9}\left(5.00 * 10^{-9}\right)}{(2.00)^{2}} \hat{i}=11.25 \hat{i} \mathrm{~N} / \mathrm{C}
$$

And $\quad \vec{E}_{3}=\frac{9 * 10^{9}\left(3.00 * 10^{-9}\right)}{(1.200)^{2}} \hat{i}=18.75 \hat{i} \mathrm{~N} / \mathrm{C}$
Hence the resultant field will be

$$
\vec{E}=\vec{E}_{1}+\vec{E}_{2}+\vec{E}_{3}=(-5.76+11.25+18.75) \hat{i}=24.24 \hat{i} \mathrm{~N} / \mathrm{C}
$$

Hence the field at $(2.00,0)$ is $\mathbf{2 4 . 2 4} \mathbf{N} / \mathbf{C}$ and in positive x direction.
(b) the position (0, 2.00).

The distance r of point Q from the charge -4.0 nC is given by formula of right angled triangle as

$$
r=\sqrt{0.500^{2}+2.00^{2}}
$$

Hence the magnitude of the electric field at point Q on y axis due to -4.00 nC charge will be
$E_{1}=\frac{9 * 10^{9}\left(-4.00 * 10^{-9}\right)}{\left(0.500^{2}+2.00^{2}\right)}=-8.47 \mathrm{~N} / \mathrm{C}$ and is attractive.
In component form the field can be written as

$$
\vec{E}_{1}=-8.47 * \cos \theta \hat{i}-8.47 * \sin \theta \hat{j}
$$

Or using the right angled triangle properties we have

$$
\begin{aligned}
\vec{E}_{1} & =-8.47 * \frac{0.500}{\sqrt{0.500^{2}+2.00^{2}}} \hat{i}-8.47 * \frac{2.00}{\sqrt{0.500^{2}+2.00^{2}}} \hat{j} \\
\text { Or } \quad \vec{E}_{1} & =-2.054 \hat{i}-8 . .215 \hat{j}
\end{aligned}
$$

Field due to charge 5.00 nC will be given by

$$
E_{1}=\frac{9 * 10^{9}\left(5.00 * 10^{-9}\right)}{2.00^{2}}=11.25 \mathrm{~N} / \mathrm{C}
$$

As this is repulsive and along positive y direction can be written as

$$
\vec{E}_{2}=11.25 \hat{j}
$$

The distance r of point Q from the charge 3.00 nC is given by formula of right angled triangle as

$$
r=\sqrt{0.800^{2}+2.00^{2}}
$$

Hence the magnitude of the electric field at point Q on y axis due to 3.00 nC charge will be $E_{3}=\frac{9 * 10^{9} * 3.00 * 10^{-9}}{\left(0.800^{2}+2.00^{2}\right)}=5.819 \mathrm{~N} / \mathrm{C}$ and is repulsive.

In component form the field can be written as

$$
\vec{E}_{3}=-5.819 * \cos \phi \hat{i}+5.819 * \sin \phi \hat{j}
$$

Or using the right angled triangle properties we have

$$
\begin{aligned}
\vec{E}_{3} & =-5.819 * \frac{0.800}{\sqrt{0.800^{2}+2.00^{2}}} \hat{i}+5.819 * \frac{2.00}{\sqrt{0.800^{2}+2.00^{2}}} \hat{j} \\
\text { Or } \quad \vec{E}_{3} & =-2.161 \hat{i}+5.403 \hat{j}
\end{aligned}
$$

Hence the resultant field at Q is give by

$$
\begin{aligned}
\quad \vec{E} & =\vec{E}_{1}+\vec{E}_{2}+\vec{E}_{3}=(-2.054+0-2.161) \hat{i}+(-8.215+11.25+5.403) \hat{j} \\
\text { Or } \quad \vec{E} & =(-4.215) \hat{i}+(8.438) \hat{j}
\end{aligned}
$$

Hence magnitude of the resultant field will be

$$
E=\sqrt{(-4.215)^{2}+(8.438)^{2}}=9.432 \mathrm{~N} / \mathrm{C}
$$

And the direction will be given by

$$
\tan \theta=\frac{8.438}{-4.215}=-2
$$

Or $\quad \theta=\tan ^{-1}(-2)=180-63.46=116.54^{0}$ with positive \times direction

