Q- Two long parallel conductors, separated by 10.0 cm , carry currents in the same direction. The first wire carries current $\mathrm{I}_{1}=5.00 \mathrm{~A}$ and the second one carries $\mathrm{I}_{2}=8.00 \mathrm{~A}$.
a) What is the magnitude of the magnetic field created by I_{1} at the location of I_{2} ?

The magnitude of magnetic field at distance d from an infinitely long straight wire carrying a current I is given by

$$
B=\frac{\mu_{0} I}{2 \pi d}
$$

Hence the field at the wire carrying current I_{2} due to current in wire I_{1} will be

$$
B_{21}=2 * 10^{-7} * \frac{5.00}{0.1}=1 * 10^{-5} \mathrm{~T}
$$

The direction of the field with right hand rule will be into the paper.

b) What is the force per unit length exerted by I_{1} on I_{2} ?

The force on the wire carrying current I in an external magnetic field B perpendicular to the wire is given by

$$
\mathrm{F}=\mathrm{BIL}
$$

Hence the current per unit length will be

$$
\mathrm{F} / \mathrm{L}=\mathrm{B}^{*} \mathrm{I}
$$

Hence the force per unit length on wire 2 due to the magnetic field of current in wire 1 will be

$$
(F / L)_{21}=B_{21} * I_{2}=\left(1 * 10^{-5}\right) * 8.00=8 * 10^{-5} \mathrm{~N} / \mathrm{m} .
$$

The direction of the force according to Fleming's left hand rule will be towards the first wire.
c) What is the magnitude of the magnetic field created by I_{2} at the location of I_{1} ?

As $B=\frac{\mu_{0} I}{2 \pi d}$
Hence the field at the wire carrying current I_{1} due to current in wire I_{2} will be

$$
B_{12}=2 * 10^{-7} * \frac{8.00}{0.1}=1.6 * 10^{-5} \mathrm{~T}
$$

The direction of the field with right hand rule will be out of the paper.
d) What is the force per unit length exerted by I_{2} on I_{1} ?
as

$$
F / L=B * I
$$

The force per unit length on wire 1 due to the magnetic field of current in wire 2 will be

$$
(\mathrm{F} / \mathrm{L})_{12}=\mathrm{B}_{12} * \mathrm{I}_{1}=\left(1.6 * 10^{-5}\right) * 5.00=8 * 10^{-5} \mathrm{~N} / \mathrm{m}
$$

The direction of the force according to Fleming's left hand rule will be towards the second wire.

