Q- In the Bohr model of the hydrogen atom, the speed of the electron is approximately 2.20 $X 10^{6} \mathrm{~m} / \mathrm{s}$. Find
(a) The force acting on the electron as it revolves in a circular orbit of radius 0.530×10^{-10} m and
(b) The centripetal acceleration of the electron.

Here the force on the electron will be the centripetal force (due to nucleus) and is given by

$$
F=\frac{m_{e} v^{2}}{R}
$$

Mass of the electron $m_{e}=9.1 * 10^{-31} \mathrm{~kg}$
(a standard constant given every book that is why not given with question)
Speed of electron $\quad v=2.20 * 10^{6} \mathrm{~m} / \mathrm{s}$
Radius of the circular path $R=0.530 * 10^{-10} \mathrm{~m}$
Substituting in above formula we get

$$
F=\frac{m_{e} v^{2}}{R}=\frac{\left(9.11 * 10^{-31}\right) *\left(2.20 * 10^{6}\right)^{2}}{0.530 * 10^{-10}}=8.319 * 10^{-8} \mathrm{~N}
$$

(Centripetal hence towards the center of the circular path)
The acceleration of the electron is given by the result of Newton's second law of motion as

$$
\mathrm{F}=\mathrm{ma}
$$

Hence centripetal acceleration of the electron is given by

$$
\begin{aligned}
\mathrm{a} & =\mathrm{F} / \mathrm{m}=\mathrm{v}^{2} / \mathrm{R} \\
\text { Or } \quad a & =\frac{v^{2}}{R}=\frac{\left(2.20 * 10^{6}\right)^{2}}{0.530 * 10^{-10}}=9.132 * 10^{22} \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

