Q- An isolated charged conducting sphere of radius 15.0 cm creates an electric field of 4.90 $\times 10^{4} \mathrm{~N} / \mathrm{C}$ at a distance 22.0 cm from its center.
(a) What is its surface charge density?
(b) What is its capacitance?
(a) The field outside a conducting sphere is same as if the charge on the sphere is as a point charge at its center and thus the total charge on the sphere is given by the relation

$$
E=\frac{Q}{4 \pi \epsilon_{0} r^{2}}
$$

Or $\quad Q=E * 4 \pi \epsilon_{0} r^{2}$
This charge is uniformly distributed over the surface of the sphere of radius R thus the charge per unit area of the sphere i.e. the surface charge density is given by

$$
\sigma=\frac{Q}{A}=\frac{E * 4 \pi \epsilon_{0} r^{2}}{4 \pi R^{2}}=\frac{4.90 * 10^{4} * 8.85 * 10^{-12 *}(0.22)^{2}}{(0.15)^{2}}=9.33 * 10^{-7} \mathrm{C} / \mathrm{m}^{2}
$$

(b) The capacitance of a conducting sphere is given by

$$
C=4 \pi \epsilon_{0} R=\frac{1}{9 * 10^{9}} * 0.15=1.67 * 10^{-11} F=0.167 p F
$$

